Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Superplastic forming
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 301-305, May 21–23, 2014,
Abstract
View Papertitled, Thermal Sprayed Protective Coatings for Superplastic Forming Ceramic Dies: A Monitoring System of Die Condition
View
PDF
for content titled, Thermal Sprayed Protective Coatings for Superplastic Forming Ceramic Dies: A Monitoring System of Die Condition
Superplastic forming (SPF) is an advanced sheet manufacturing process typically used for low- volume, high-value products. SPF dies made from refractory castables have a lower production cost than metal dies, but their brittle nature is a limiting factor. This work investigates surface degradation mechanisms in ceramic dies and how they are affected by the application of thermal spray coatings. Among the more notable accomplishments of the study is the development of a test rig that simulates die-part interface conditions during superplastic forming and monitors die wear, making it possible to predict ceramic die lifetime for different coatings.