Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Bending
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 514-519, April 29–May 1, 2024,
Abstract
View Paper
PDF
Thick deposits were produced from pure Al powder of three different sieve sizes using cold spraying at the same process parameters. The in-plane mechanical and fracture properties of the deposits were investigated using bending of small specimens in four specimen orientations. It was shown that increasing the Al particle size by approximately 50% and 100% leads to small, but statistically significant differences of yield strength. Further, the increase in the powder particle size led to higher fracture toughness K IC but lower fatigue crack growth threshold ΔK thr . This can be attributed to two different fracture mechanisms in the cold sprayed deposits. A trans-particular fracture in the near-threshold fatigue regime is controlled by the microstructure and work hardening of the particles. At higher cyclic loads and in quasi-static regime, the particle decohesion and the resulting crack path determine the fracture behavior instead. However, the observed effect of particle size was rather small, much smaller than the effect of spray process parameters observed in the previous research.
Proceedings Papers
ITSC1998, Thermal Spray 1998: Proceedings from the International Thermal Spray Conference, 1061-1065, May 25–29, 1998,
Abstract
View Paper
PDF
This study focuses on two major advantages of induction heating over flame heating in the treatment of coated boiler tubes. In both cases the induction heating process is simple, fast and effective. Firstly, we will show how the use of induction heating results in exceptionally thick and hard coatings with low porosity. Having high corrosion and wear resistant properties, the products can satisfy industry's needs for reliable coatings with a long service life. Next, the study will detail how a pipe with the coating already applied can be simultaneously bent by induction heating while the coating is melted and fused to the pipe. The result is a thicker, more even and reliable coating than that accomplished by the flame sprayed method on a bent pipe. The process is not only less cumbersome, but again provides a superior product for the market.