Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 209
Heat treatment
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 347-355, May 4–6, 2022,
Abstract
PDF
Thermochemical processes are an appropriate way to improve the surface hardening of the material against wear. Thermal spraying is a group of deposition processes that can deposit different classes of materials. The use of thermomechanical process after metallic coatings deposition can result in a unique combination of bulk and surface properties. There are some studies that indicate the defects and stresses caused in the crystal lattice as one of the factors that most influence nitrogen diffusion during the nitriding process. The HVAF (High Velocity Air-Fuel) process can generate different fault conditions and stress-strain in the crystal lattice. The aim of this work is study the effect of the plasma nitriding or, as it is known, Glow Discharge (GD), on FeMnCrSiNi coating deposited with HVAF process. Initially, it was observed the formation of expanded austenite and CrN on the HVAF coating, followed by important increase on the hardness of the coating.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 422-431, May 4–6, 2022,
Abstract
PDF
High amorphous phase formation tendency, a desirable microstructure and phase composition and silicon evaporation are the challenges of spraying Yb 2 Si 2 O 7 environmental barrier coatings (EBCs). This research addresses these issues by depositing as-sprayed high crystalline Yb 2 Si 2 O 7 using atmospheric plasma spray (APS) without any auxiliary heat-treating during spraying, vacuum chamber, or subsequent furnace heat treatment, leading to considerable cost, time, and energy savings. Yb 2 Si 2 O 7 powder was sprayed on SiC substrates with three different plasma powers of (90, 72 and 53 kW) and exceptional high crystallinity levels of up to ~91% and deposition efficiency of up to 85% were achieved. The silicon mass evaporation during spraying was controlled with a short stand-ff distance of 50 mm, and an optimum fraction of Yb 2 SiO 5 secondary phases (<20 wt.%) was evenly distributed in the final deposits. The desirable microstructure, including a dense structure with uniform distribution of small porosities, was observed. The undesirable vertical crack formation and any interconnected discontinuities were prevented. Reducing the plasma power from 90 kW to 53 kW, while conducive for mitigating the silicon mass loss, was detrimental for microstructure by increasing the fraction of porosities and partially melted or unmelted fragments. The gradual decrease of the coating temperature after deposition alleviated microcracking but has an insignificant effect on the crystallinity level. Coatings annealed close to their operating temperature at 1300 °C for 24 hours demonstrated sintering and a crack healing effect, closing the tiny microcracks through the thickness. An improved coating composition was detected after annealing by the transformation of Yb 2 SiO 5 to Yb 2 Si 2 O 7 (up to ~10 wt.%).
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 543-552, May 4–6, 2022,
Abstract
PDF
Iron-based coatings are often considered as replacement of hard chromium and WC-Co, as they pose lower health and environmental impact. In many cases the combination of mechanical and chemical properties of ferrous based alloys may be satisfactory and their relatively low cost make these coatings an interesting candidate for many applications. This study is inspired by opportunities to harden the ferrous base materials by strain hardening, solid solution strengthening, dispersion strengthening, and precipitation hardening. Already commercially available Fe-based coating materials with precipitates of mixed carbides and borides in the metastable austenitic matrix achieve a high hardness. In this study the cavitation erosion and abrasion resistance of various Fe-based coatings produced by HVAF and HVOF processes were investigated. Two experimental precipitation containing materials were prepared, and the sprayed coatings were tested for abrasive and cavitation erosion wear. In addition to precipitations, the importance of proportion of ferrite and retained austenite phases were studied by affecting the microstructure by heat treatments as the ability of different phases to affect hardening and ductility may become crucial in generating desired material properties. The properties of experimental and some commercial Fe-based alloys are compared with WC-Co and Cr 3 C 2 -NiCr coatings by property mapping.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 586-595, May 4–6, 2022,
Abstract
PDF
The health of railway material is of paramount importance for the safety of rail transportation. Railways are subject to heavy mechanical loading and to harsh environments, causing corrosion and damage that can bring to failure. The cold spray process has a great potential as an efficient and portable refurbishment technology, with the advantage of avoiding thermal effects on the substrate. In this study, a proof of concept for the cold spraying of railway steel onto a similar material is presented. This represents a first step towards the development of a cold spray solution for railway repair. First, the as-atomized steel powder revealed to be hardly sprayable. A heat treatment was then optimized and applied to the powder to induce microstructural evolution and to improve deposition efficiency and material quality. Therefore, the refurbishment of damaged railway samples by cold spray was proven to be viable. Finally, mechanical testing assessed the restoration of the structural properties needed for the application.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 763-772, May 4–6, 2022,
Abstract
PDF
This study investigates the solid particle erosion performance of cold sprayed tungsten carbide-nickel coatings using alumina particles as erodent material. After coating fabrication, specimens were annealed in an electric furnace at a temperature of 600 °C for 1 hour. The coatings were examined in terms of microhardness and microstructure in the as-sprayed (AS) and annealed (AN) conditions. Subsequently, the erosion tests were carried out using a General Full Factorial Design with two control factors and two replicates for each experimental run. The effect of the annealing on the erosion behavior of the coating was investigated at the two levels (AS and AN conditions), along with the impact angle of the erodents at three levels (30°, 60°, 90°). Finally, two regression models that relate the impact angle to the mass loss were separately obtained for the two cold spray coatings.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 928-938, May 4–6, 2022,
Abstract
PDF
In recent years, laser-based post-processing of thermally sprayed coatings has gained significant attention as an alternative post-processing route; to mitigate the microstructural defects such as pores, microcracks, and splat boundaries associated with thermally sprayed coatings. Optimisation of the parameters for the laser post-processing is of paramount importance to maintain the required properties of these coatings. The current thermo-mechanical model simulates the impact of laser heat treatment on thermally sprayed Tungsten Carbide Cobalt (WC-17Co) coating and AISI 316L as substrate. A sequentially coupled transient thermal and structural analysis is performed. Transient temperature field from thermal analysis due to laser source will become input loads for the subsequent stress-strain analysis with appropriate boundary conditions. Both the coating and substrate are given temperature-dependent material properties. A gaussian heat flux distribution is used to model the laser source. The finite element analysis results underline the importance of temperature gradients and the presence of thermally induced stress-strain fields responsible for promoting coating degradation. The obtained results also revealed that heat input and dimensional characteristics play a vital role in the annealing treatment's efficacy. Three separate test cases were considered wherein the hatch spacing was varied, keeping the other parameters (scan speed, laser power, and laser spot diameter) constant. The impact of hatch spacing on the temperature and residual stress distribution across the coating was assessed by this simulation. Residual compressive stress was observed in the coating for two out of the three test cases, which further improved the durability of the coating.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 51-59, May 24–28, 2021,
Abstract
PDF
The hot-section components of modern gas turbines (e.g., turbine blades and vanes) are typically manufactured from Ni-base superalloys. To develop the γ/γ' microstructure that imparts superior thermomechanical and creep properties, Ni-base superalloys usually require three distinct heat treatments: first a solution heat treatment, followed by primary aging, and finally secondary aging. To achieve oxidation resistance, MCrAlY coatings are applied on the superalloy components as either environmental coatings or bond coats for thermal barrier coatings. In this study, the effects of different processing sequences on MCrAlY coating characteristics and short-term isothermal oxidation performance were investigated. Specifically, cold spray deposition of NiCoCrAlTaY coatings was carried out on single-crystal Ni-base superalloy substrates that underwent various degrees of the full heat treatments prior to being coated. The remaining required heat treatments for the superalloy substrates were then performed on the coated samples after the cold spray deposition. The microstructures of the CMSX-4 substrates and NiCoCrAlTaY coatings were characterized after each heat treatment. Isothermal oxidation performance of the coated samples prepared using different sequences was evaluated at 1100°C for 2 hours. The results suggested a promising procedure of performing only solution heat treatment on the superalloy substrate before coating deposition and then primary aging and secondary aging on the coated samples. This processing sequence could potentially improve the oxidation performance of MCrAlY coatings, as the aging processes can be used to effectively homogenize coating microstructure and promote a thin thermally grown oxide (TGO) scale prior to actual isothermal oxidation.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 107-114, May 24–28, 2021,
Abstract
PDF
This present work investigates the effect of electromagnetic fields on cold spray processes by means of an induction-heating cold spray (IHCS) system. Aluminum powder was cold sprayed onto inductively heated Ti6Al-4V (Ti64) substrates. These materials were selected to minimize the mechanical contribution to coating adhesion. As a result, changes in coating adhesion strength can be attributed to improved metallic bond formation due to the effect of the electromagnetic field. Four different initial substrate surface temperatures were used in the study to assess the role of initial temperature as well. Deposition efficiency and adhesion and tensile strength measurements were recorded and are used to characterize the hybrid coating process and compare it with traditional techniques.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 171-176, May 24–28, 2021,
Abstract
PDF
In this work, Inconel 718 gas-atomized powder was successfully heat treated over the range of 700-900°C. As-atomized and as-heat treated powders were cold sprayed with both nitrogen and helium gasses. Cold spray of high strength materials is still challenging due to their resistance to particle deformation affecting the resulting deposit properties. Powder heat treatment to modify its deformation behavior has recently been developed for aluminum alloy powders, however, there is no literature reported for Inconel 718 powders. The microstructural evolution of the powder induced by the heat treatment was studied and correlated with their deformation behavior during the cold spray deposition. Deposits sprayed with heat-treated powders at 800 and 900 °C and nitrogen showed less particle deformation and higher porosity as compared to as-atomized deposit associated to the presence of delta phase in the powders precipitated by the heat treatment. In contrast, deposits sprayed with helium using both powder conditions, as-atomized and as heat-treated powders, showed high particle deformation and low porosity indicating that the type of gas has a greater effect on the particle deformation than the delta phase precipitated in the heat-treated powders. These results contribute to understanding the role of powder microstructure evolution induced by heat treatment on the cold spray deposits properties.
Proceedings Papers
Laury-Hann Brassart, Anne-Françoise Gourgues-Lorenzon, Jacques Besson, Francesco Delloro, David Haboussa ...
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 177-188, May 24–28, 2021,
Abstract
PDF
Industries developing cold-spray processes aim at producing dense and resistant coatings. Controlling microstructure and inter-particular fracture characteristics of sprayed coatings is essential to improve their properties. To do so, post-spraying heat treatment is a promising approach. This work addresses the development of such heat treatments and focuses on the analysis of recovery and recrystallization. Different heat treatment parameters were explored, namely, holding temperature and time, heating rate, and heating method. This approach revealed a competition between recrystallization and other microstructural evolution mechanisms, such as precipitation and porosity coalescence. An optimized heat treatment, allowing microstructural softening and adequate mechanical properties, was sought after. First, differential scanning calorimetry measurements applied to as-sprayed coatings enabled to identify recovery and recrystallization temperature ranges. Then, a variety of heat treatments was applied, involving long-time isothermal holdings as well as shorter cycles. Microstructure analysis and hardness measurements allowed making a first selection of treatment conditions.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 197-202, May 24–28, 2021,
Abstract
PDF
Residual stress can be developed in most thermally sprayed coatings due to the momentum of molten particles during impact, and heat transfer during solidification of the splats. Another reason for residual stress built-up in thermally sprayed coatings is due to splat curl-up during solidification and the differences in thermal expansion coefficients between the coating and the substrate. However, in the cold spraying process, it is believed that the main reason for residual stress formation is plastic deformation during impact and flattening of solid particles. Residual stresses can drastically influence coating quality and reduce its service time. In this study, residual stress is measured for two well-known nickel based super alloys (Inconel 625 and Inconel 718) deposited on 7074 aluminum alloy substrates by the cold spraying technique. Residual stress in Inconel 625 was found to be highly tensile on the surface and compressive on the subsurfaces. After heat treatment the residual stress was relieved and was compressive in nature. Whereas for Inconel 718, residual stress was compressive on the surface and tensile on the subsurfaces in the as-sprayed condition. After heat treatment, the residual stress was compressive with increased magnitude. The heat treatment at 800°C made the residual stress more compressive. The porosities of both Inconel 625 and Inconel 718 were reduced after heat treatment.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 247-255, May 24–28, 2021,
Abstract
PDF
In this study, a novel strategy to manufacture high strength cold-sprayed Al coating by using powder with wide size distribution is proposed. The microstructure and mechanical properties of deposited coating sprayed at three typical impact velocities before and after heat treatment are investigated. Furthermore, the deposition and strengthening mechanisms of the coating sprayed at various impact velocities are clarified. The results show that the coating with higher density and mechanical properties can be successfully fabricated by cold spray at comparatively low particle impact velocity. The mechanical properties were enhanced with the contribution of heat treatment process. It is the in-process tamping effect induced by larger powder that results in the severe plastic deformation thus leads to densification and excellent mechanical properties of the cold-sprayed Al coating.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 440-446, May 24–28, 2021,
Abstract
PDF
Stabilized bismuth oxide with fluorite structure is considered a promising electrolyte material for intermediate temperature solid-oxide fuel cells (SOFCs) due to its high oxygen ion conductivity. The ternary system, Bi2O3-Er2O3-WO3, is of particular interest because it is ionically conductive as well as thermally stable. This study investigates the quality of Bi2O3-Er2O3-WO3 (EWSB) electrolyte produced by plasma spraying. The phase structure and cross-sectional microstructure of plasma-sprayed EWSB were characterized by XRD and SEM. The as-sprayed EWSB was found to have a dense microstructure with well bonded lamellae. XRD analysis showed the formation of EWSB with δ-phase and a trace of β-phase, while the β-phase disappeared after annealing at 750°C for 10h. Electrical property tests revealed that the plasma-sprayed electrolyte also had excellent ionic conductivity (0.26 S cm-1 at 750 °C), making it a strong candidate for use in SOFCs at intermediate temperatures.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 172-177, May 26–29, 2019,
Abstract
PDF
This paper discusses the challenges of constructing mathematical models of physicochemical and heat-mass transfer processes associated with reactive heterogeneous materials used in laser additive manufacturing. The results of calculations of thermocapillary convection induced by laser heating in an aluminum melt with an admixture of nickel particles are presented. Models of interphase and chemical interactions with the formation of intermediate phases and intermetallic compounds on nickel particles added to the melt during laser alloying or cladding are proposed, which make it possible to calculate the composition of intermetallic phases in the trace of the beam after crystallization and cooling.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 235-240, May 26–29, 2019,
Abstract
PDF
In this study, Ti-6Al-4V coatings were deposited by low-pressure plasma spraying (LPPS) using different powder sizes and spray currents. The coatings were also heat treated at different temperatures, after which their microstructure and properties were assessed. The results show that finer powders are more conducive to the preparation of dense coatings and that porosity is reduced by increasing plasma current. As for the effects of heat treating temperature, at 870 °C, the lamellar structure of the coating disappeared and was found to be fully equiaxed with a grain size of 5-10 µm at 1100 °C. Hardness also increased, becoming significantly higher than that of forged TC4 alloy following treatment at 1100 °C.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 413-419, May 26–29, 2019,
Abstract
PDF
An internationally recognized best practice for disposing used nuclear fuels is to store them in specially designed containers in deep geological repositories. One type of spent fuel container is a carbon steel canister with a cold-sprayed copper coating. The aim of this study is to assess the impact of various factors on the ductility of this protective copper layer. The current investigation finds that there can be significant variability in ductility when feedstock powder size and chemical composition are changed while keeping spraying and heat treatment conditions constant. Test results show that the ductility of nitrogen-sprayed copper decreases with increasing hardness, but can be improved by raising annealing temperature from 300 to 600 °C. The effects of substrate geometry and process variations are discussed as well.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 456-461, May 26–29, 2019,
Abstract
PDF
This study assesses the mechanical performance of cold-sprayed aluminum 6061 coatings heat treated using focused IR radiation. The heat treatment was performed in-process with the aim of improving the ductility and strength of the coatings. The properties of the heat-treated samples are compared to those achieved using traditional annealing and as measured in as-sprayed samples. It was found that the rapid IR heat treatment increased the ultimate tensile strength of the coatings by 52% and elongation at failure by 43%.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 476-483, May 26–29, 2019,
Abstract
PDF
This study investigates the effect of heat treatment on the microstructure and tribological properties of TiB 2 -reinforced AlSi 10 Mg composite coatings produced by cold spraying. SEM and XRD analysis showed that the microstructure of the feedstock powder was well preserved in the as-sprayed material with uniformly distributed TiB 2 nanoparticles, some aggregated clusters, and a cellular-like network of fine eutectic Si particles embedded in an aluminum matrix. With increasing heat treatment temperature, the Si particles grew larger in size, but significantly fewer in number and a reduction in microhardness was observed due mainly to the elimination of the work hardening effect and coarsening of the Si particles.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 746-749, May 26–29, 2019,
Abstract
PDF
Sand blasting and high-velocity thermal spray processes can produce residual stresses in superalloy substrates that can significantly influence microstructure development. To investigate this effect, single-crystal superalloy substrates were sand blasted using different levels of force (zero, light, and heavy) and then coated with a MCrAlY layer by HVOF spraying. Cross-sectional analysis of an as-sprayed sample revealed a subsurface depletion zone with a composition rich in Mo nano precipitates. Cross-sectional examinations after vacuum heat treating and at various points during oxidation testing showed that elemental interdiffusion occurred between the coating and substrate and that sand blasting intensity has a major influence on the depth of the interdiffusion zones.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 937-942, May 26–29, 2019,
Abstract
PDF
The aim of this study is to evaluate the effect of electromechanical treatment on the structure and wear behavior of plasma-sprayed nickel coatings. The coatings were air plasma sprayed on low carbon steel substrates, then electromechanically treated using different values of current density. Erosion resistance was assessed based on volume loss and coating microstructure and phase composition were evaluated via SEM and XRD. Erosion mechanisms were compared by analyzing coating cross-section and surface microstructures and wear resistance was associated with features such as defects, porosity, and cracks.