Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Optical metallography
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC1996, Thermal Spray 1996: Proceedings from the National Thermal Spray Conference, 251-255, October 7–11, 1996,
Abstract
View Paper
PDF
Experimental studies of the subsonic combustion process have been conducted in order to determine the quality and economics of polyester, epoxy, urethane, and hybrid polyester-epoxy coatings. Thermally sprayed polymer coatings are of interest to several industries for anti-corrosion applications, including the infrastructural, chemical, automotive, and aircraft industries. Classical experiments were conducted, from which a substantial range of thermal processing conditions and their effect on the resultant coating were obtained. The coatings were characterized and evaluated by a number of techniques, including Knoop microhardness tests, optical metallography, image analysis, and bond strength. Characterization of the coatings yielded thickness, bond strength, hardness, and porosity.
Proceedings Papers
ITSC1996, Thermal Spray 1996: Proceedings from the National Thermal Spray Conference, 717-723, October 7–11, 1996,
Abstract
View Paper
PDF
An experimental study of twin-wire electric arc spraying of zinc and aluminum coatings demonstrates the suitability of the process for anticorrosion applications. Experiments were conducted using Box-type full-factorial designs. Operating parameters were varied around the following process parameters: nozzle diameter, nozzle geometry, and system pressure. A systematic design of experiments displayed the range of processing conditions and their effect on the resultant coatings. The coatings were characterized with hardness and deposition efficiency tests, and optical metallography. Coating properties are quantified with respect to roughness, hardness, porosity, thickness, bond strength, and microstructure. The features of the coatings are correlated with the process changes. Selected analytical calculations and process diagnostics of the meltpool dynamics are presented.