Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 888
High-velocity oxyfuel spray coating
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 1-7, April 29–May 1, 2024,
Abstract
View Paper
PDF
A key technology to minimize CO 2 -emissions is the production of hydrogen from water electrolysis. The proton exchange membrane water electrolysis (PEMWE) consists of a stacked system out of bipolar plates (BPP), porous transport layers (PTL) and a membrane electrode assembly (MEA). Research activities are ongoing to minimize material input, reduce costs and increase the performance. For example, the BPP on the anodic side of the stack is currently manufactured of bulk titanium and its substitution by a Ti-coated steel substrate is economically interesting. The main requirements for the BPP-coating are a high coating density, a low electrical resistance and a long lifetime in a harsh electrochemical environment. Coating application on substrates of s ≤ 0.5 mm thickness is conducted with three thermal spraying technologies: Cold Gas Spraying (CGS), High Velocity Air-Fuel (HVAF) spraying and High Velocity Oxy-Fuel (HVOF). Substrate preparation is examined as well. Coating development is conducted with regards to coating thickness, density and oxidation. The examination of coatings includes roughness analysis, structural and chemical analysis. The results allow an evaluation of the suitability of thermally sprayed Ti-coatings by the structural properties for the PEMWE application. Among the three tested processes, CGS is the most suitable for this type of application. The three chosen thermal spraying processes are examined for coating application on metal sheets in context of PEMWE for the first time.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 152-158, April 29–May 1, 2024,
Abstract
View Paper
PDF
In biomass boilers, corrosion is a prevalent concern that arises at high temperatures. This is mainly because the fuels consumed in these boilers have a high alkali, chlorine, and other molten salt content that has occasionally led to material depletion, leaks, and unforeseen plant shutdowns. Applying protective coatings using thermal spray techniques is a practical answer to this issue. The current work focused on applying powders of Inconel 625 and Inconel 718 to boiler steel using a high-velocity oxy-fuel spraying method. The samples after coating deposition were subjected to the conditions of a biomass-fired boiler for 15 cycles to study the performance of the coatings in a real environment. The decrease of thickness over time was used to evaluate the erosion-corrosion process. Various characterization techniques were used to examine the as-sprayed and eroded-corroded specimens. The X-ray diffraction (XRD) technique was utilized to analyze the phases, while the surface characteristics of powders, coatings, and samples exposed to erosion-corrosion were investigated through scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDS). When exposed to the actual boiler environment, the findings showed that Inconel 625-coated steel performed better than Inconel 718-coated steel.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 185-193, April 29–May 1, 2024,
Abstract
View Paper
PDF
Erosion-corrosion is a severe problem observed in the coal fired thermal power plant boilers which lead to premature failure of boiler tubes. Thermal spray coatings have been applied successfully to check the erosion-corrosion of boiler tubes. In the present research work NiCrTiCRe coating powders were successfully deposited on T22 boiler steel by two different coating processes i.e. high velocity oxy-fuel (HVOF) and cold spray process. The performance of the coatings in actual power plant boiler were investigated and compared. The uncoated and coated T22 boiler steels were subjected the superheater zone of the coal fired boiler for a total of 15 consequent cycles. The thickness loss data and weight change analysis were used to establish kinetics of the erosion-corrosion. X-ray diffraction, surface field emission scanning electron microscope/energy dispersive spectroscopy (FE-SEM/EDS) techniques were used in the present work for the analysis. The results of thickness loss data indicated that the cold sprayed coating performed better in thermal power plant boiler environment.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 248-255, April 29–May 1, 2024,
Abstract
View Paper
PDF
Cavitation is a wear process in engineering systems caused by the energy release of collapsing bubbles leading to the failure of critical components such as valves, pumps, and propellers. Thermally sprayed coatings can be applied to improve the wear resistance of these components. This investigation considers a WC-NiCrBSi coating composition under cavitation wear, where the WC phase provides the strength and the NiCrBSi matrix offers corrosion resistance in seawater. Coatings were deposited on AISI 440C stainless steel discs of 32mm diameter and 8mm thickness using industrially optimized parameters for the HVOF JP5000 system. Indirect cavitation tests were conducted using a modified ASTM G32 testing procedure on coated test coupons in as-sprayed and Hot Isostatic Pressed (HIPed) conditions. Two tests were performed for each coating using natural seawater of pH 8.19 at room temperature, and averaged wear values are reported to compare the cavitation rate and cumulative mass loss of the coatings. Coating microstructural phases in the as-sprayed and HIPed conditions were identified using X-ray diffraction. The microstructure of the coating substrate system and post-cavitation test wear scars were investigated using Scanning Electron Microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). This investigation provides an understanding of the corrosive-cavitation wear behavior and failure modes of coatings. The cavitation erosion rate and cumulative mass loss results showed that the as-sprayed WC-NiCrBSi coatings improve the cavitation wear resistance of the substrate.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 284-290, April 29–May 1, 2024,
Abstract
View Paper
PDF
Gas-fuel HVOF for thermal spraying of WC-CoCr powder is widely known and well described in literature. Focus are the various influencing factors like fuel-to-oxygen ratio, standoff-distance and powder feed rate on the coating characteristics like hardness and porosity. However, the total gas flow is usually not being described in this context despite its wide influence on particle characteristics and therefore on coating properties. In this study, the characteristic influence of the total gas flow on roughness, hardness and porosity is described as well as its effect on the particle characteristics. The study performed was based on technical standard values for thermally spraying WC-Co-Cr via gas-fuel HVOF (DJ2700 hybrid) and additional trials for increased and decreased total gas flow. It was possible to determine that with higher gas flow the deposition rate increases while the roughness and porosity decrease. However, these results cannot be viewed in isolation as other factors, such as the fuel-to-oxygen ratio, are affecting the particle and coating characteristics at the same time. Therefore, the total gas flow is also considered in combination with other factors.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 291-297, April 29–May 1, 2024,
Abstract
View Paper
PDF
Titanium porous transport layers (PTL) are important components in proton exchange membrane water electrolysis (PEMWE) cells. The performance enhancement and the reduction of manufacturing cost of PTLs are of importance for market expansion of PEMWE. Vacuum plasma spraying (VPS) was used to prepare PTL or modify PTL of sintered titanium powders and the PTLs by VPS showed a high performance. Regarding the cost efficiency, it is of great interest to produce PTLs using more economical spray processes than VPS. In this study, high velocity oxy-fuel spraying (HVOF) was used to produce highly porous titanium coatings for this purpose. The spray process was developed to achieve a high porosity of up to Φ = 30 % using three titanium powders with size distributions of fA = -90 +45 μm, fB = -63 +20 μm and fc = -45 +11 μm. The coating structures were examined on the cross sections of the titanium coatings with scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The porosity was determined using the image analysis system ImageJ. The deposition efficiency of the titanium powder fC = -45 +11 μm was determined. The results show that the coating structure significantly depends on the titanium powders. Highly porous titanium coatings of Φ = 24 - 40 % can be produced with the titanium powders of fB = -63 +20 μm and fc = -45 +11 μm. Titanium oxides are hardly visible on the cross-sections of the titanium coatings. A high deposition efficiency of approximately DP ≈ 70 % was measured for the titanium powder of fc = -45 +11 μm.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 386-397, April 29–May 1, 2024,
Abstract
View Paper
PDF
Light alloys are being investigated as an alternative to ferrous-based engineering components. The manufacturing of such components requires a surface modification step necessary to eliminate the top surface's poor wear and corrosion response for improved functionality. Thermally sprayed cermet coatings offer improved surface resistance to wear and/or corrosion. This work presents a customized composition of WC-CoCr feedstock cut in fine and coarse powder size distribution (PSD) to fabricate different coatings on aluminium alloy and steel substrates using two high velocity spray techniques. The WC-CoCr coatings sprayed using the high velocity air-fuel (HVAF) technique at varied parameters consist of six different coatings (four thick, ~ 200 μm and two thin ones, 60-80 μm) to investigate the relationship between processing conditions, microstructure, and performance. Using scanning electron microscopy (SEM) and electro-dispersive X-ray spectroscopy (EDX) offered a comprehensive characterization of the respective coatings. Micro indentation, dry sliding wear, dry sand abrasion, and cavitation erosion tests conducted on the samples show the performance of the coatings based on the processing techniques and spray conditions. However, despite the similarities in the microstructural makeup of the coatings and the measured micro indentation hardness of the coatings (1000-1300 HV0.1), their respective specific wear rate (SWR) varied based on spray processing techniques and the substrate on which the coatings were deposited. Three of the HVAF coatings showed ~ 60 % more wear on the aluminium alloy substrate compared to the same coating deposited on a steel substrate. However, irrespective of the substrate used the HVAF coatings showed better wear resistance than the HVOF coating. The dry sand abrasion wear results of the two thick HVAF coatings show them superior to the HVOF coating in the three-body wear experiment conducted. The cavitation erosion resistance of the coatings varied based on the processing conditions and the driving mechanisms but the best two were the AF-2 and AF-6 samples.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 483-494, April 29–May 1, 2024,
Abstract
View Paper
PDF
Recently, laser deposition technologies have made significant advancements in their ability to manufacture high temperature metals and ceramics. One of these technologies, known as Direct Energy Deposition (DED), has the potential to deposit a wide range of materials from polymers to refractory materials, ceramics and functionally graded materials. This study evaluates major microstructural characteristics of WC-Co additively manufactured by DED technology. This material is commonly used for deposition of protective coatings due to its high hardness and excellent wear resistance. To this end, hardness and wear resistance of the DED processed samples were also investigated in this study. WC-Co coatings are generally deposited using various thermal spray technologies. However, it is speculated that DED deposited WC-Co could provide superior properties such as higher hardness and wear resistance. A DED manufactured WC-Co sample was examined by Optical Microscopy (OM), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), and X-ray Diffraction (XRD). Those studies could provide information about important microstructural features, chemical compositions and phase distribution. All the tests were also repeated on High-Velocity Oxygen Fuel (HVOF) deposited WC-Co with the same composition. Both DED and HVOF produced WC-Co coatings experience decomposition of the carbides into compound phases; however, the DED deposited sample displays unique dendritic and eutectic structures that improve the hardness and wear properties compared to the homogenous HVOF coating. In addition, DED produced samples show higher hardness and relatively better wear resistance compared to the HVOF deposited ones. The obtained results could establish a relationship between microstructural characteristics with hardness and wear properties of both samples.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 558-569, April 29–May 1, 2024,
Abstract
View Paper
PDF
Nowadays, Cr 3 C 2 -based cermet coatings by HVOF process are widely recognized for their corrosion and erosion resistance, particularly at high temperatures. These coatings also offer the advantage of being lightweight and exhibiting superior wear, corrosion and cavitation resistance in room-temperature applications. Their lightweight nature and high temperature capability make them an attractive alternative to WC-based alloy coatings and hard Cr plating coatings. The objective of this study is to develop optimal Cr 3 C 2 -NiCr coatings by comparing different feedstock materials, including feedstock with nanocrystalline and/or submicron sized Cr 3 C 2 phases. The focus of the investigation is on understanding the impact of feedstock features such as particle size, morphology, and carbide sizes, as well as sliding abrasive wear conditions (specifically SiC grit size and working load), on the coating properties and sliding wear performance. The results of the study indicate that the sliding wear resistance of the Cr 3 C 2 -NiCr coatings is highly influenced by the features of the Cr 3 C 2 carbides. The presence of nano, submicron and few microns sized carbides in the coatings improves their density and hardness, leading to a significant reduction in wear rates under test conditions. Furthermore, the size of the abrasive SiC grit on the counter surface plays a significant role in determining the sliding wear behavior of these coatings. Based on the analysis of the test data, the mechanisms behind the performance of the Cr3C2-NiCr coatings have been investigated and used to interpret their sliding wear behaviors. A high microhardness in the coating is considered a reliable indicator of high quality, full density, and satisfactory wear resistance. This study has identified and recommended optimized materials for improved coating properties based on the key findings. These findings contribute to the understanding of the relationship between feedstock features, sliding abrasive wear conditions, and the wear rates of HVOF-sprayed Cr 3 C 2 -NiCr coatings.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 580-593, April 29–May 1, 2024,
Abstract
View Paper
PDF
Thermally sprayed wear resistant coatings have proven their effectiveness in many applications. Their benefit is unquestionable in the case of mutual sliding contact or abrasive stress caused by hard particles. However, for the case of dynamic impact loading, either single or cyclic, the lifetime of different types of coatings is rarely described, probably due to the complex influence of many parameters. The paper deals with the evaluation of resistance to dynamic impact loading of two types of HVOF-sprayed Cr3C2-rich binary hardmetal coatings (Cr3C2-42%WC-16%Ni and Cr3C2-37%WC-18%NiCoCr) with respect to the variation of their deposition parameters and compares them to a well established Cr3C2-25%NiCr coating. For each coating, a Wohler-like curve was constructed based on a failure criterion of sudden increase in impact crater volume. Besides, coatings deposition rate, residual stress, microstructure and hardness were evaluated. Differences in the coatings dynamic impact wear resistance was found, related to their residual stress. The failure mechanism and crack propagation mode are analyzed using SEM of impact surface and cross-sections. Deformation and related stress changes in coated systems during dynamic impact loading are described using FEA analyzes.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 38-45, May 22–25, 2023,
Abstract
View Paper
PDF
A variety of process parameters affect the properties of the deposited coatings in the High Velocity Oxygen Fuel (HVOF) spraying process. In fact, the quality of coatings can be improved without changing feedstock or deposition technology by the application of optimized spraying process parameters. In this study, a large set of data “Big Data” is used to create a variety of machine learning models for prediction of porosity content and hardness values of HVOF deposited coatings. A set of process parameters was selected as validation run and actual HVOF coating was deposited using those parameters. The porosity level and hardness were measured and compared to those predicted by models. The models differ based on the number of neurons utilized in each layer for the calculations. A model with six neurons could predict closest porosity level and the one with three was the best in prediction of hardness. The final model could be obtained by running data through both models. Through this study, a robust machine learning model for the optimization of HVOF process parameters will be developed that could be used for other coatings and thermal spraying techniques.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 46-53, May 22–25, 2023,
Abstract
View Paper
PDF
Thermal-sprayed coatings have been extensively used in aerospace with the main purpose to overcome critical challenges such as abrasive wear, corrosion, and erosion under high temperatures and pressures. Such protective coatings can also play a crucial role in optimizing the efficiency of gas turbine engines and therefore in reducing fuel consumption and CO 2 emissions. CuAl-based thermal sprayed coatings are commonly employed in tribological interfaces within gas turbine engines to improve the fretting wear resistance. These coatings are typically deposited by more traditional thermal spray techniques such as Air Plasma Spray (APS), which can result in high amounts of oxidation within the coating. The main purpose of this study is to critically evaluate lower temperature deposition techniques such as High Velocity Oxygen Fuel (HVOF). More specifically, commercially available Cu-10Al powders were deposited by APS and HVOF and compared in terms of their microstructural, mechanical properties, and tribological behavior at various temperatures. The results showed that the friction coefficient for both coatings was equivalent at room temperature while it was lower for the APS coating at high temperature. Similarly, the specific wear rates showed little difference between the different deposition processes at room temperature while the APS coating had a lower wear rate at elevated temperature when compared to the HVOF coating. The differences in the friction and wear behavior were attributed to differences in the interfacial processes.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 112-118, May 22–25, 2023,
Abstract
View Paper
PDF
In this study, microstructural characterization is conducted on WC-17Co coatings produced via High Velocity Oxygen Fuel (HVOF), High Velocity Air Fuel (HVAF), and Cold Spraying (CS). All coatings prepared were observed to be of good quality and with relatively low porosity content. SEM study showed important microstructural features and grain morphologies of each coating. While composition of feedstock material was approximately similar, elemental composition using EDS showed higher Co content and lower WC in the CS deposited coating. XRD experiment identified formation of more complex oxides and tungsten phases in coatings deposited technologies involving melting of powders such as HVOF and HVAF. These phases consisted mainly of cobalt oxides and brittle phases such as W 3 Co 3 C or W 2 C caused by decarburization of the tungsten carbide particles. Hardness of all coating samples were examined and CS deposited coating exhibited considerably lower hardness compared to the other two coating samples instead of having significantly lower porosity content. It could be contributed to dissociation and physical loss of hard carbide phase during high velocity impact of particles in CS process. It is in good agreement with detection of higher amount of cobalt in CS deposited coating material. It is strongly believed that results obtained from this study can be used for future investigation in thermo-mechanical properties of WC-Co coatings.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 119-126, May 22–25, 2023,
Abstract
View Paper
PDF
The cavitation performance of wear resistant cermet coatings can deteriorate in a corrosive environment. This investigation therefore considered the cavitation resistance in seawater of thermally sprayed High Velocity Oxy Fuel (HVOF) WC-10Co-4Cr coatings deposited on two different substrate materials of carbon steel and austenitic stainless steel. Coatings were deposited using industrially optimised parameters. Cavitation tests were conducted following the ASTM G32 test method in indirect mode, where there was a gap of 0.5 mm between the sonicator and the test surface. A submersed copper cooling coil controlled the temperature of the seawater. The cumulative cavitation erosion mass loss and cavitation erosion rate results are reported. The eroded substrate and coating surfaces were analysed using Scanning Electron Microscopy (SEM) in combination with energy dispersive x-ray analysis (EDX) to understand the failure modes. Coating phases were identified using x-ray diffraction. Results are discussed in terms of the cavitation failure modes and cavitation erosion rates for both the substrate and coated surfaces.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 357-364, May 22–25, 2023,
Abstract
View Paper
PDF
In the current work, a NiCrAlY and Fe-based alloy are HVOF-sprayed due to the combination of high coating density and customizable coating properties. The oxygen to fuel gas ratio was varied to modify coating defects in a targeted manner. The results demonstrate material dependent defect mechanisms. Further investigations regarded residual stresses, hardness, and electrical conductivity. In particular, the thermal diffusivity proved to be very promising. Moreover, the coatings were compared with previous work on arc-sprayed coatings of similar chemical composition regarding insulation capability.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 373-379, May 22–25, 2023,
Abstract
View Paper
PDF
Conventionally, bulk WC and Cr 3 C 2 -based carbide compositions have been used independently of each other. However, recent investigations have begun to explore combining these carbides together within the same composite/hardmetal coating system. This research builds on earlier work characterising 42%wt% WC-42%wt% Cr 3 C 2 - 16%wt% Ni coatings sprayed under “low”, “medium” and “high” thermal input conditions, to assess their compositions and microstructures after heat treatment in air at 900°C for up to 30 days. Coatings were deposited by HVOF, Ar-He and Ar- H 2 shrouded plasmas respectively, onto Alloy 625 substrates with Ni20Cr bond-coats and top-coats. The coating compositions and lattice parameters were quantified by Rietveld peak fitting of XRD patterns. The microstructures were analysed from cross sectional backscatter electron micrographs. Rapid phase development occurred within the first five days, beyond which the compositions and microstructures remained stable. The microstructures retained extremely fine, sub-micron grain sizes, while the carbide phases exhibited high degrees of metastable alloying, even after 30 days at 900°C. The coating compositions are discussed, and a mechanism proposed to account for the rate of development and overall metastable microstructure.
Proceedings Papers
Formation of AlSiCCr Columnar Medium-Entropy Coating via Aluminizing of Cr 3 C 2 25NiCr HVOF Coating
Andre Renan Mayer, Willian Rafael de Oliveira, Luciano Augusto Lourençato, Anderson Geraldo Marenda Pukasiewicz
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 386-391, May 22–25, 2023,
Abstract
View Paper
PDF
There are several challenges when designing components exposed to harsh environments. Cases such as hydraulic turbines and marine propellers are classic examples of demands for materials capable of withstanding erosion and corrosion wear. To enhance and recover worn surfaces, it is usual the use of coatings. This study proposes a new series of coatings based on diffusional effects observed for thermally sprayed chromium carbide coating. A columnar morphology was observed, due to the diffusional gradient perpendicular to the surface. The coating has also shown an absence of porosity and peculiar properties.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 480-486, May 22–25, 2023,
Abstract
View Paper
PDF
Thermally sprayed WC/CoCr coatings are the most established coatings in the valve industry. However, due to the high wear resistance and as-sprayed surface roughness, the surface post processing costs are very high. Near-net-shaped fine powder coatings have the possibility to reduce the costs effectively. Due to the high specific surface to volume ratio of the powders, undesired phase transformations can occur during the spraying process. To avoid such phase transformations, the novel thermal spraying process Ultra-HVOF (UHVOF) is used in this study. An extensive parameter study is carried out on the influences of the process parameters on microhardness, porosity, as-sprayed surface roughness, phase composition and wear resistance. With suitable process parameters, near-netshaped and almost pore-free coatings can be applied. Compared to a conventional HVOF sprayed WC/CoCr coating, a wear reduction by a factor of three can be achieved in a pin-on-disktest against Al 2 O 3 at a load of F = 15 N. Due to the pore-free and highly wear-resistant coatings, significantly thinner coatings can be used for the protection against corrosion and wear in valves. In addition, the required surface quality of the near-net-shape coatings can be achieved by polishing only. Thus, the novel UHVOF coatings represent a cost-effective alternative to conventionally used valve coatings.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 503-508, May 22–25, 2023,
Abstract
View Paper
PDF
The amorphous Fe-based coating was fabricated on 304 stainless steel matrix by high velocity oxygen fuel (HVOF). The microstructure, friction properties and wear mechanism of the coating were mainly analyzed by scanning electron microscopy, X-ray diffractometer, Vickers microhardness tester, friction and wear tester, three-dimensional optical profilometer. Results show that: most of the coatings were amorphous, and the amorphous content increased first and then decreased with the increase of heat input. When the spraying parameters are kerosene flow rate 21 L/h, oxygen flow rate 56 m 3 /h, powder feeding rate 35 g/min, spraying distance 360 mm, the coating amorphous content is up to 84%, the hardness is over 842 HV 0.2 , the wear resistance advances over 2.9 times than the matrix.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 509-513, May 22–25, 2023,
Abstract
View Paper
PDF
NiAl coating can be used as bond coats for thermal barrier coatings (TBCs) with good ductility and excellent resistance against high temperature oxidation. In this study, nickel-coated aluminum composite powders were used to prepare NiAl intermetallic compound coatings on nickel-based superalloys using an air plasma spray (APS), high-velocity oxygen-fuel (HVOF) and cold spray (CS) processes. Different spraying parameters in the HVOF and CS processes were used to make different coating microstructures, and the coating prepared by the APS technique served as a control for the HVOF and CS processes. The microstructure and phase constitution of the coatings were studied using XRD, SEM and EDS. The results indicate that the deformation behavior of the NiAl powder was different under the different spraying parameters. Less defects of oxides and inclusions were observed in the CS coatings compared with the HVOF coatings.
1