Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-5 of 5
Glazing
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 789-794, September 27–29, 2011,
Abstract
PDF
Ni base overlay coatings are being used to protect metallic engineering components in extreme conditions and actually traditional thermal spray deposition technologies such as Air Plasma Spraying (APS) and High Velocity Oxy-Fuel (HVOF) are mainly used to deposit these materials. However, Coldspray is receiving increased attention during the last years because of the lower spraying temperature required to deposit metallic coatings avoiding oxidation and reducing the coating porosity and the amount of residual stresses. The adhesion to the substrate and the growth mechanism of coldspray deposits are based on plastic deformation of impinging particles, so, in the case of high strength materials such as for example Ni alloys, it could be a lack in plastic deformation leading to insufficient compactness of the coating, barrier properties and high temperature resistance. Further improvements in the coatings performances could be attained by post-deposition thermal treatments to enhance coating adhesion and barrier properties. In this sense, the aim of this study is to explore a two-step way to produce high performances Inconel 625 alloy coatings by coldspray deposition followed by a laser glazing treatment. Coldspray Inconel 625 alloy coatings has been deposited onto AISI304 steel substrates. Laser glazing is performed using high power diode laser (HPDL) ROFIN-SINAR 13DS; the local thermal treatment on the coating surface induce microstructural changes which could modify and improve the coating compactness and performances. Coating morphology and microstructure has been evaluated and reported both before and after laser consolidation as a function of different laser conditions.
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 648-653, May 3–5, 2010,
Abstract
PDF
Large (3 x 3 x 0.05 m 3 ) refractory pieces (as the ones used for examples in smelters or incinerators) do not sustain regular glazing in a kiln, mostly due to high associated costs. Still, glass coatings could find use on such pieces due to their physical properties (durability, chemical inertia, tightness, etc.). Thermal spraying, using oxyacetylenic flame in particular, appears as a cost-effective solution permitting to circumvent the aforementioned disadvantages. This study aims at evaluating the quality of two types of coatings in terms of permeability. The first type considered coatings (resulting from a previous optimization of the spray operating parameters) sprayed directly on the substrates whereas the second one considered an additional brass underlayer manufactured by twin-wire electric arc spraying. The wettability of the glaze on the refractory substrate and on the brass underlayer was studied to comprehend the coating structural attributes (thickness, porosity, crazing, etc.) as well as their effects on the permeability. A specific measuring device was developed to assess permeability.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 1017-1022, May 14–16, 2007,
Abstract
PDF
Many substrates do not sustain the conventional glazing process (i.e., vitreous glazing) due to the relatively high temperature required by this treatment (i.e., up to 1400 °C in some cases) to fuse glazes after their application on the surface to be covered. Thermal spraying could appear as a solution to circumvent this limitation and to avoid the thermal decomposition of the substrates. This contribution describes some structural attributes of glaze coatings manufactured by flame spraying. It also discusses the influence of the feedstock powder morphology and some of its physical properties on the coating characteristics.
Proceedings Papers
ITSC 2002, Thermal Spray 2002: Proceedings from the International Thermal Spray Conference, 107-111, March 4–6, 2002,
Abstract
PDF
Plasma sprayed ceramic composites are being used in a growing number of applications despite requiring post-treatment to obtain desired properties. This paper evaluates plasma sprayed alumina-titania coatings both as-deposited and after microwave processing. In each case, the physical (porosity), mechanical (hardness and adhesive tensile strength), and functional (wear resistance) properties are measured. It is shown that the evaluation techniques can be used to determine the quality of the layers at any stage of production. The experimental procedures are briefly described and the results discussed using multiple illustrations. Paper includes a German-language abstract.
Proceedings Papers
ITSC 2001, Thermal Spray 2001: Proceedings from the International Thermal Spray Conference, 583-592, May 28–30, 2001,
Abstract
PDF
This paper deals with a comprehensive evaluation of the laser glazing or re-melting route as a possible means of specifically enhancing the performance of thermal sprayed WC-Co coatings. In the present study, a high-power continuous-wave 9kW CO 2 laser was utilized for laser treatment of plasma sprayed as well as detonation sprayed WC-Co coatings. The influence of the two most important laser-related variables, namely laser power and scan speed, on the properties of the laser-treated layers was investigated. Both mere surface densification by melting a thin top layer of the coating as well as melting of the entire portion of the coated layer were targeted during laser treatment. In each case, the laser treated coatings were fully characterized by optical microscopy, scanning electron microscopy, and microhardness measurements. In addition, the influence of laser processing on the elemental distribution, phase constitution and extent of defects in the treated layers was investigated. The tribological performance of the laser-glazed coatings was also evaluated and compared against the performance of their as-sprayed counterparts. The study has revealed significant differences between the response of plasma and detonation sprayed WC-Co layers when subjected to laser treatment. The potential of plasma-sprayed coatings to match the performance of the inherently superior detonation sprayed coatings by adopting laser glazing as a post-processing step has also been assessed.