Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 181
Ceramic coating
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 323-329, May 22–25, 2023,
Abstract
View Paper
PDF
The application of thermally sprayed coatings on CFRPs has gained great interest to enhance thermal and tribological properties and several processes have been optimized. However, for the coating of internal surfaces of tubes there is no sufficient technical solution. This paper introduces a novel and unique process technique for coating the internal surfaces of CFRP tubes using the transplantation of thermally sprayed coatings. A negative shape tube with defined surface and material properties was used as a mandrel and coated using atmospheric plasma spraying (APS). The CFRP was then produced using filament winding onto the coating, and after curing, the specimen was separated from the mandrel. With this process innovation, CFRP tubes with internal ceramic or metallic coatings can be produced without any thermal degradation of the polymeric matrix or damage to the carbon fibers. Compared to conventional coating methods, this novel process technique has several advantages. It allows for the production of internal coatings with low roughness of R z = 10 μm as sprayed without post-processing. The specimens also have a significantly lower tendency to corrode compared to conventional coated CFRPs. A high adhesion strength of the coatings of 15.9 MPa was achieved and the hardness of the internal ceramic coating is 918 HV0.1
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 199-204, May 4–6, 2022,
Abstract
View Paper
PDF
In addition to the proper functional properties, the adhesive strength represents one of the key criteria for industrial use of thermally sprayed coatings. Since conventional thermal spraying processes are almost carried out exclusively in air atmosphere, this leads to the oxidation of the particles and of interfaces within the coatings. As a result, conventional thermally sprayed metallic and metal-ceramic coatings are characterized by heterogeneous microstructures with interlamellar oxide fringes at the interfaces between individual splats and also between the coating and the substrate. This has a decisive influence on the bond strength and on the wear and corrosion protection properties of thermally sprayed coatings. The aim of this study is to present the potentials of thermal spraying processes carried out in a mixture of monosiliane and an inert gas at ambient pressure as an alternative to the known vacuum spraying process in order to prevent oxidation during the coating process. Using the example of arcsprayed coatings, it is demonstrated that the extremely low oxygen partial pressure in the silane-doped medium leads to coatings free of oxide seams with a reduced porosity and substantially enhanced properties.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 220-225, May 4–6, 2022,
Abstract
View Paper
PDF
In metal die casting as well as plastic injection molding, controlling the heat balance during the injection and solidification process can lead to fewer defects and a better component quality. An appropriate cooling channel design for the mold can help to control the solidification to a certain extent. But the heat control achievable by cooling channels is limited due to the high effective thermal mass, and therefore near-cavity energy input is of interest. In this paper, a simulation study is performed demonstrating the use of plasma sprayed ceramic coating as a heating coating at the cavity of the mold. The goal is to apply heat faster and locally focused during the solidification process in metal die casting as well as before the injection phase in plastic injection molding. The heat generation of these ceramic coatings is modelled using experimentally measured values and the effects of this approach on defects such as distortion and hot tearing is discussed.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 453-460, May 4–6, 2022,
Abstract
View Paper
PDF
Hybrid aerosol deposition (HAD) is a new coating method to deposit homogeneous nano-structured ceramic coatings. An accurate evaluation of the fabricated coating properties is required. In this study, α-Al 2 O 3 fine powder was sprayed by HAD. The obtained coatings were dense and uniform with a nanocrystalline structure. An X-ray diffraction measurement revealed that the fabricated HAD Al 2 O 3 coatings mainly consisted of α-Al 2 O 3 phase. The hardness and Young's modulus of the HAD Al 2 O 3 coatings were evaluated by a micro-Vickers method and a nanoindentation method using the Weibull distribution. The hardness of HAD Al 2 O 3 coatings measured by micro-Vickers was ~1400 HV (~15 GPa). The variation of mechanical properties of HAD coatings measured by the nanoindentation method was extremely small compared to those of plasma-sprayed coatings, which also indicates that HAD coatings contain less pores and cracks than plasma-sprayed coatings.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 695-700, May 4–6, 2022,
Abstract
View Paper
PDF
Aerosol cold spraying (ACS) is modification of low-pressure cold spray technology which allows to deposit ceramic and metal-based coatings. ACS technology in vacuum possesses the formation of films from sub-micro and nanoparticles directly at room temperature. The ACS technology is still under development to cover more application and discover solutions of spraying different kind of powders on different types of material substrate and optimizing spraying conditions to obtain the best results. The main objective of the present work is to develop a new ACS cold spray technology of Hydroxyapatite (HA) and Copper powder deposition onto both the implants and ceramic substrates. The new AD spraying system with radial injection of particles to be deposited is constructed and tried. An influence of technology parameters on the coating structure and properties are presented. In addition, the combined cold spray and sintering technology technique is further investigated for additive manufacturing applications.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 709-715, May 4–6, 2022,
Abstract
View Paper
PDF
Deposition of protective dense environmental barrier layers is a promising solution to improve the reliability and environmental durability of the next-generation turbines and other industrial applications. In this context, spraying of fine particles could enhance the formation of fine dense coating microstructures with improved properties. In AIST we are focusing on the spraying of the fine particles via different spraying technologies including suspension plasma spraying, as well as deposition of the fine solid particles directly by aerosol deposition (AD) and plasma-assisted aerosol deposition (so-called Hybrid Aerosol Deposition; HAD. The HAD is a new coating window to spray the fine ceramic particles via the implementation of a low-power rf-plasma source to assist the aerosol deposition at room temperature. This study introduced the feasibility of utilization of HAD as an outstanding technology for deposition of dense ceramic coatings on different substrate materials and 3D deposition capability. Highly dense and well-adhered Al 2 O 3 coatings without obvious observable cracks and bulk-like properties were successfully fabricated on different substrate materials of SUS 304, Aluminium, Al 2 O 3 and glass, via HAD of fine particles. The substrate material and its hardness significantly influenced the first deposition step, which determined the coating adhesion and properties. Furthermore, homogeneously uniform, dense, and crack-free coating with a strong adhesion has been fabricated successfully on cylindrical substrates with 6.3 mm diameter. During HAD spraying the plasma activated the surface of the particles without reaching to the molten state, then the activated particles impact and stuck with the substrate by room temperature impact consolidation mechanism. Therefore, the fabricated coatings had the same crystal structure as the starting feedstock powder, and the activated surface act as glue and improved the deposition efficiency and 3D capabilities. Herein, the deposition phenomena of HAD makes it as a promising candidate technology for development of environmental and sealing layers of highly dense microstructure, with the targeted crystalline phase structure, without stoichiometric composition nor phase transformation and improved deposition efficiency on multi-shape components in different fields such as environmental, thermal barrier coatings (TBCs), environmental barrier coatings (EBCs) and gas turbine applications.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 315-321, May 24–28, 2021,
Abstract
View Paper
PDF
Thermally sprayed ceramic coatings can be used for wear protection as well as thermal and electrical insulation. When exposed to environments with high humidity, the water absorption of the ceramic coating has a tremendous impact on the electrical insulation. In thermally sprayed ceramic coatings, water can easily be absorbed by the porous microstructure of the coating. A general result of the water absorption is the reduction of the dc resistivity. However, in the high frequency regime of ac loads, contrary results were observed for sealed Al 2 O 3 coatings on steel substrates. Specimens exposed to high air humidity have shown an increased ac resistance compared to dry specimens if frequencies above 1 MHz are considered. To analyse this phenomenon, a novel measurement technique was developed to investigate the influence of the water absorption of detached ceramic coatings on the ac resistivity at high frequencies. Moreover, the water absorption of the ceramic is measured gravimetrically. To ensure the results are also applicable to ceramic coatings on substrates, the morphology of the coating was analysed using electron microscopy and compared to reference specimens deposited on steel substrates from [1].
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 322-330, May 24–28, 2021,
Abstract
View Paper
PDF
Thermally sprayed Al 2 O 3 -TiO 2 ceramic coatings provide exceptional hardness and corrosion and wear resistance, but the high velocities at which they are applied result in an inherently porous structure that requires some type of remediation. This study evaluates the effectiveness of ultrasonic aluminum phosphate sealing treatments on plasma sprayed Al 2 O 3 -40TiO 2 ceramic coatings. The sealants were applied with and without ultrasonication (20-40 kHz) and were assessed using SEM/EDX analysis, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS). Test data indicate that optimum sealing, corresponding to the highest values of corrosion protection and erosion resistance, are achieved under ultrasonication at 30 kHz for 5 hours.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 758-764, May 24–28, 2021,
Abstract
View Paper
PDF
This study investigates the microstructure and hardness of coatings produced by atmospheric plasma spraying using a commercial (Al,Cr) 2 O 3 solid solution (ss) powder blended with various amounts of TiO 2 . The microstructures were analyzed using SEM, EDS, and XRD measurements. It was shown that blending with TiO 2 reduces porosity and defect density while increasing deposition efficiency and microhardness. Small amounts of Ti in ss (Al,Cr) 2 O 3 splats were detected in coatings prepared from blends with higher TiO 2 content. Variations in aluminum and chromium content were also observed.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 53-58, May 26–29, 2019,
Abstract
View Paper
PDF
Cold spraying is a promising process for fabricating functional coatings. Because of the solid-state particle deposition, the electrical and chemical properties of the coatings are similar to those of the bulk materials. Mechanical properties, on the other hand, differ from those of bulk materials due to severe plastic deformation of the particles. Residual stress may thus be an important variable to track during cold spraying although the formation mechanism is not entirely clear. In this study, the residual stress of metallic (copper) and ceramic (titania) coatings is measured during the cold spray process. The results are presented and discussed.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 131-135, May 26–29, 2019,
Abstract
View Paper
PDF
A wide range of properties can be achieved in intermetallic coatings applied by gas detonation spraying (GDS). The properties of Fe-40at%Al GDS layers, however, may change when exposed to temperatures exceeding a threshold level. To characterize such changes, Fe-40at%Al GDS coatings were subjected to systematic dilatometric studies in which temperatures were cycled from room temperature to 1180 °C. The investigation revealed both irreversible and reversible phase transitions as described in the paper. Dilatometry measurements obtained from sintered samples made from the same powder are presented for comparison.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 901-907, May 26–29, 2019,
Abstract
View Paper
PDF
In this study, dicalcium silicate (Ca 2 SiO 4 ) coatings were deposited on stainless steel substrates by atmospheric plasma spraying. Salt spray and immersion tests were carried out to evaluate corrosion performance and XRD, SEM, and EDS were used to analyze phase composition and microstructure. During corrosion testing, calcium carbonate crystals appeared on coating surfaces and the pores were filled with hydration products, producing denser coatings. Potentiodynamic polarization curves and electrochemical impedance spectroscopy plots indicated that the corrosion resistance of the coatings increased after immersion in saltwater and artificial seawater, and in the latter case, a silica-rich layer was observed between the coating and the calcium carbonate crystals.
Proceedings Papers
ITSC 2018, Thermal Spray 2018: Proceedings from the International Thermal Spray Conference, 42-46, May 7–10, 2018,
Abstract
View Paper
PDF
As a candidate material against plasma etching, yttrium oxide has been coated onto etching chamber by plasma spray technique. However, the plasma spray technique introduces undesirable coating properties such as porous structure and deleterious thermal effects. To reduce the disadvantage of thermal impact, cold spray was used as an alternative technology to deposit thick and dense yttrium oxide coatings. Primary nanoscale Y 2 O 3 were used as the original powder, for the ceramic materials are intrinsic brittle and are difficult to be deposited by cold spray. The nano-powder were first agglomerated by hydrothermal treatment with addition of inorganic salt to acquire suitable powder for cold spray, and then deposited on aluminum alloy 6061 substrates by cold spray process with compressed air as propellant gas. About 200μm yttrium oxide coatings were formed on the substrate alloy. Different processing parameters were employed to optimize microstructure and properties of the coating.
Proceedings Papers
ITSC 2018, Thermal Spray 2018: Proceedings from the International Thermal Spray Conference, 349-354, May 7–10, 2018,
Abstract
View Paper
PDF
It is usually difficult to deposit dense ceramic coatings with splats well bonded by plasma spraying at room temperature. Following the recent research progress on the splat interface bonding formation, it was found that there is a well defined relationship between the critical bonding temperature and materials melting point. Thus, it was proposed to control the lamellae bonding through the deposition temperature. In this study, to examine the feasibility of the bonding theory, a novel approach for the development of coating microstructure through materials design is proposed. Accordingly typical ceramic materials were selected of relative low melting point for plasma spraying of dense coating with well bonded splats. The experiment was conducted by using K 2 Ti 6 O 13 for splat deposition at ~110°C cooling down from a higher temperature to avoid substrate adsorbates and coating was deposited at room temperature in ambient temperature without substrate preheating. Results show that the splat is fully bonded with a ceramic substrate, while the coatings present a dense microstructure with a similar fracture morphology to sintered bulk ceramics. Moreover, the erosion test at 90° further confirmed the formation of a ceramic coating with lamellae fully bonded.
Proceedings Papers
ITSC 2018, Thermal Spray 2018: Proceedings from the International Thermal Spray Conference, 515-520, May 7–10, 2018,
Abstract
View Paper
PDF
Deposition of ceramic coatings by spraying of fine powder particles is a promising solution to obtain uniform microstructure and improved properties, because it is expected to form small splats with reduced residual stress and pore size. Although direct injection of fine particles has many challenges such as poor rheological properties (e.g., low flow ability and agglomeration), and small momentum to inject and impact, it is still attractive and worth to try. From this point of view, we have improved feeding and injection technique of fine powder particles, which enables us to directly spray fine ceramic particles with a newly developed low power dc plasma torch. Preliminary results obtained with this system will be compared with those by other fine powder spray technology such as suspension plasma spray and hybrid aerosol deposition to show similarity and difference when the injection methods of the fine powder particles are different in this paper.
Proceedings Papers
ITSC 2018, Thermal Spray 2018: Proceedings from the International Thermal Spray Conference, 792-798, May 7–10, 2018,
Abstract
View Paper
PDF
The plasma jet in the vacuum plasma spray process presents characteristics such as supersonic flow, expanded jet dimensions, and a smaller decay rate for jet velocity and temperature that are distinctly different than in atmospheric plasma spray. In this work, a solution precursor vacuum plasma spray (SPVPS) process is described, which combines vacuum plasma spray with solution precursor as the feedstock. The deposition of superhydrophobic ceramic coatings via the SPVPS process is explored. Yb 2 O 3 coatings are deposited by a radial injection of Yb(NO 3 ) 3 solution in the anode of an F4-VB torch operating under a pressure of 150-250 mbar. Solution precursor atmospheric plasma spray (SPAPS) is also applied to deposit superhydrophobic Yb 2 O 3 coatings for comparison with the SPVPS process. The wetting behaviors of the coatings are characterized by water contact angle measurement, water rolloff test, and dynamic water impact test. The experimental setup, plasma jet characteristics, interactions of solution droplets and plasma, microstructure and wetting behaviors of coatings in the two distinct processes are compared and discussed.
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 1-5, June 7–9, 2017,
Abstract
View Paper
PDF
Multi-electrode APS has proven significant advantages with regard to spray rates, deposit efficiency and component life time. So far, three-cathode and three-anode spray guns have been established successfully in several industrial sectors where high spray rates are mandatory. Based on the successful three-anode plasma spray gun DELTA, the five-anode APS gun PENTA was developed to further increase productivity. With its gross power of up to 125 kW it allows very high spray rates and thus significantly reduced coating times. This paper focusses on the development of high spray rate parameter settings for producing oxide ceramic coatings. All coatings will be investigated with regard to their microstructures. Furthermore, economical benefits of the five anode technology will be highlighted.
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 315-321, June 7–9, 2017,
Abstract
View Paper
PDF
The study of both the interface strength and residual stresses within a plasma sprayed ceramic coating is of great interest which main purpose is a better understanding of the mechanical properties of metal/ceramic systems. In this work, experiments involving a LASAT facility (LASAT: Laser Shock adhesion test) were implemented in order to analyse the adhesion and the damaging behaviour (debonding and buckling) of alumina coatings onto Co-based alloy. Similar alumina coatings were deposited using same plasma parameters with various surface preparations: smooth or severe grit blasting, with and without pre-oxidation. The non-destructive analyses (Optical and IR imaging) of the buckled region after LASAT have allowed to compare and discuss the interface strength of the studied coated samples. Further discussion was carried out by analysing the blister, resulting from the release of residual stresses within the coating after LASAT. It was thus evidenced that the residual stress state is a key parameter on resulting adhesive properties. This explorating work suggests using the LASAT method to analyse the adhesion and residual stresses within thermal sprayings.
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 649-653, June 7–9, 2017,
Abstract
View Paper
PDF
In order to meet the increased requirements for power electronics in the automotive sector, an effective utilization of difficult installation spaces is necessary. A new production concept to realize this 3D integration of electronic circuit boards directly on components is the combination of thermal spraying and cold gas spraying to create multilayer-coating systems consisting of conducting and insulating coatings. In this study two- and tree-dimensional demonstrators were developed, showing the flexible use of thermal spraying in mechatronics and power electronics. In contrast to past studies on this construction concept, the main focus of this study was on the optimization of the ceramic insulting coatings and bond strength of the metallization. The ceramic coatings showed a dielectric strength and electrical resistance, which was suitable for most applications. Additional post treatment improved the electrical resistance in humid conditions. Already 150 µm thick electrical insulation layers showed a breakdown voltage of more than 5 kV AC and a specific electrical resistance of 5.1011 Ω.m.
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 697-702, June 7–9, 2017,
Abstract
View Paper
PDF
The microstructure of thermal barrier coatings (TBC) plays an important role in the thermal cycling behavior of TBCs. In this study, ceramic coatings with different pore structures were prepared by atmospheric plasma spraying (APS). Graphite with different morphology was used as pore former to adjust the pore structure of the coatings. Then, the thermal cycling behavior of TBCs with different structure was characterized. By depositing a porous 8YSZ layer on the conventional 8YSZ layer, the thermal cycling life of TBCs can be improved. However, when the porosity of the porous layer increased to about 30%, the porous layer detached from the under layer after several cycles. An elastic energy model was applied to explain the thermal cycling behavior of TBCs
1