Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 30
Metals-based additive manufacturing
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 130-137, April 29–May 1, 2024,
Abstract
View Papertitled, Numerical Simulation of the Shaft Parts Repairing Process by Laser Metal Deposition Technique
View
PDF
for content titled, Numerical Simulation of the Shaft Parts Repairing Process by Laser Metal Deposition Technique
Restoring the damaged shaft parts to extend their service life is an economical and environmentally friendly solution. In recent years, the laser metal deposition (LMD) process has received increasing attention in component restoration. However, the residual stress and deformation inevitably occur due to the heat input, leading to the deflection of the repaired shafts. Therefore, this study aims to minimize the deflection of LMD-repaired shaft parts through parameter optimization. The width and height of the LMD deposit as a function of the laser power and traverse speed were achieved by fitting a series of one-pass experimental results. Based on it, the finite element analysis was conducted to clarify the effect of the repairing conditions (e.g., laser power, traverse speed, and initial substrate temperature) on the deflection and residual stress distribution of the shaft parts after LMD repairing. A 304 stainless steel round bar with a diameter of 6 mm was served as the component to be repaired. The deposit was 316L stainless steel, whose deposition process was realized by the element birth and death technique. The results indicated that the free-end of the specimen experienced complicated deformation during the LMD and cooling process. After cooling off, the substrate presents a residual compressive stress along the axial direction. Moreover, the substrate deflection can be reduced by improving the initial substrate temperature. This study provided an important reference for optimizing the process parameters in repairing the shaft parts.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 213-220, April 29–May 1, 2024,
Abstract
View Papertitled, Refurbishment Process of Platform Combustion System of SGT5-8000H
View
PDF
for content titled, Refurbishment Process of Platform Combustion System of SGT5-8000H
The H-class turbine, introduced nearly a decade ago, has reached a significant milestone with its 100th global sale. With 108 units sold and 91 in operation across four continents, accumulating over 3.2 million fired hours, the SGT5-8000H has established itself as a market leader, setting industry benchmarks for performance. Since its launch, the SGT5-8000H's output has increased from 375 MW to 450 MW, and combined cycle efficiency has surpassed 62%. To maintain optimal performance, the platform combustion system (PCS) of the SGT5-8000H has undergone refurbishment in Berlin since 2017. Beginning with a PCS from Samsun, Turkey, the process involves a detailed inspection, repair, recoating, and final assembly. Advanced technologies, such as blue light scanning, enhance efficiency and enable lifecycle assessments. Innovative repair methods, including 3D printed patch repairs using laser powder bed fusion (LPBF), reduce costs. Laser-based cutting and welding automation further minimizes heat input and distortion, ensuring the PCS's reliability and longevity. These technological advancements contribute to the SGT5-8000H's stable and dependable operation.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 483-494, April 29–May 1, 2024,
Abstract
View Papertitled, An Investigation on the Effect of Deposition Technique on Micro-Structural and Mechanical Properties of WC-17Co Deposited Using Direct Energy Deposition (DED) and High-Velocity Oxygen Fuel (HVOF)
View
PDF
for content titled, An Investigation on the Effect of Deposition Technique on Micro-Structural and Mechanical Properties of WC-17Co Deposited Using Direct Energy Deposition (DED) and High-Velocity Oxygen Fuel (HVOF)
Recently, laser deposition technologies have made significant advancements in their ability to manufacture high temperature metals and ceramics. One of these technologies, known as Direct Energy Deposition (DED), has the potential to deposit a wide range of materials from polymers to refractory materials, ceramics and functionally graded materials. This study evaluates major microstructural characteristics of WC-Co additively manufactured by DED technology. This material is commonly used for deposition of protective coatings due to its high hardness and excellent wear resistance. To this end, hardness and wear resistance of the DED processed samples were also investigated in this study. WC-Co coatings are generally deposited using various thermal spray technologies. However, it is speculated that DED deposited WC-Co could provide superior properties such as higher hardness and wear resistance. A DED manufactured WC-Co sample was examined by Optical Microscopy (OM), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), and X-ray Diffraction (XRD). Those studies could provide information about important microstructural features, chemical compositions and phase distribution. All the tests were also repeated on High-Velocity Oxygen Fuel (HVOF) deposited WC-Co with the same composition. Both DED and HVOF produced WC-Co coatings experience decomposition of the carbides into compound phases; however, the DED deposited sample displays unique dendritic and eutectic structures that improve the hardness and wear properties compared to the homogenous HVOF coating. In addition, DED produced samples show higher hardness and relatively better wear resistance compared to the HVOF deposited ones. The obtained results could establish a relationship between microstructural characteristics with hardness and wear properties of both samples.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 508-513, April 29–May 1, 2024,
Abstract
View Papertitled, Experimental and Numerical Study of the Spattering Dynamic Mechanisms in Selective Laser Melting
View
PDF
for content titled, Experimental and Numerical Study of the Spattering Dynamic Mechanisms in Selective Laser Melting
Spattering is an unavoidable phenomenon in the selective laser melting (SLM) process, which can cause various printing defects and harmful powder recycling. Since the size of powder spattering is too small at the micron level, it is difficult to investigate the entire dynamic spattering process experimentally. The comprehensive understanding of the intricate dynamics of powder spattering during the SLM process remains incomplete. Therefore, we develop a new multiphase flow model to study the transient dynamic behaviors of the gas phase and powder spattering, which agrees well with the experimental observation result. It is the first time that the whole transient dynamic process of powder motion from starting to move induced by the vapor jet to falling to the substrate wall and stopping completely was observed. Powder spattering motion dynamics induced by metal vapor jet and argon gas flow, as a function of time, laser parameters, and location, are presented. The moving speed, total amount, and dropping distribution on the substrate of powder spattering that varies with laser parameters are quantified.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 712-723, April 29–May 1, 2024,
Abstract
View Papertitled, Investigation of Mechanical Properties of Cobalt Chromium Additively Manufactured Using Direct Energy Deposition: Experimental Study and Finite Element Analysis
View
PDF
for content titled, Investigation of Mechanical Properties of Cobalt Chromium Additively Manufactured Using Direct Energy Deposition: Experimental Study and Finite Element Analysis
Cobalt chromium (CoCr), a well-known biocompatible material, was additively manufactured using direct energy deposition (DED) technology in this study. Since DED is a relatively new addition to additive manufacturing (AM) processes, there is not enough information about important properties of fabricated parts and components using this technology. This study investigates some important mechanical characteristics of the additively manufactured CoCr using a variety of numerical simulation methods in addition to mechanical tests and experiments. Mechanical experiments such as hardness, wear, and flexural bending test were conducted on DED processed samples. All experiments were also conducted on conventionally processed CoCr specimens for comparison purposes. This study attempts to explain mechanical properties in terms of microstructural characteristics of each sample. DED processed CoCr samples exhibited a complex microstructure with a variety of features such as cellular, columnar, and equiaxed grains within their melt pools. While the DED processed sample had a lower hardness compared to the conventionally processed one, it exhibited a higher wear resistance. These results were discussed in terms of microstructural characteristics and metallurgical bonding knowing that porosity level was negligible in both samples. The out-of-plane mechanical strength of CoCr samples was measured by conducting flexural bending test, and the conventional sample showed a higher flexural modulus than the DED sample. The bend tests were also numerically simulated using two different finite element analysis (FEA) procedures. The FEA results for the DED and conventionally processed samples follow the same trend as the results obtained from the experimental flexural bending test. The layer structure and interfacial bonding of the DED sample could have contributed to the lower flexural modulus compared to the conventional sample.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 473-479, May 22–25, 2023,
Abstract
View Papertitled, Anisotropy of Mechanical Properties of DMD Build Inconel 738
View
PDF
for content titled, Anisotropy of Mechanical Properties of DMD Build Inconel 738
Anisotropy of stress-strain behavior, fracture toughness, and fatigue crack growth rate was studied for Inconel 738LC alloy built by the Dynamic Metal Deposition technique (3DMD, a high-speed Directed Energy Deposition technique). The measured quasi-static properties, i.e. stress-strain and fracture toughness showed only subtle anisotropy, with no more than 10% differences found for different orientations. The fatigue crack growth rate was influenced by the specimen orientation more significantly (30% for fatigue crack growth threshold, up to 90% for Paris exponent and coefficient). This pilot study attributes the anisotropy of fatigue crack growth properties to material texture and the columnar grain geometry resulting from directional solidification. The obtained testing results indicate that 3DMD technology can produce materials with good mechanical and fracture properties even from materials considered as non-weldable such as In 738LC. The study provides a solid experimental base for further investigation of the fatigue crack growth mechanism relation to the material texture in 3DMD In 738LC.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 514-518, May 22–25, 2023,
Abstract
View Papertitled, Effect of Laser Power on Forming Quality and Crystallization of Amorphous Alloy Prepared by SLM
View
PDF
for content titled, Effect of Laser Power on Forming Quality and Crystallization of Amorphous Alloy Prepared by SLM
Amorphous alloys have attracted extensive attention due to their unique atomic arrangement and excellent properties. However, the application in practical engineering is seriously limited due to the size, crystallization and other problems. Laser additive manufacturing technology has the characteristics of high heating, cooling rate and point by point melting deposition, which provides a new idea for the preparation of amorphous alloys. Zr 50 Ti 5 Cu 27 Ni 10 Al 8 amorphous alloy was prepared on the surface of pure zirconium substrate by selective laser melting technology. The composition and structure of the samples were characterized. The results show that the samples are mainly composed of amorphous phase, and the crystallization mainly occurs in the superimposed zone of heat affected zone. With the decrease of laser power, the area of crystallization zone and the number of crystallization particles decrease. However, if the laser power is too low, there will be non-fusion defects and cracks, which will seriously affect the forming quality and amorphous rate of amorphous alloy.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 675-682, May 22–25, 2023,
Abstract
View Papertitled, Suspension Sprayed YSZ Thermal Barrier Coatings on Inconel 718 Aerospike Manufactured by Laser Powder Bed Fusion
View
PDF
for content titled, Suspension Sprayed YSZ Thermal Barrier Coatings on Inconel 718 Aerospike Manufactured by Laser Powder Bed Fusion
Additive Manufacturing (AM) processes offer geometrical freedom to design complex shaped parts that cannot be manufactured with conventional processes. This leads to new applications including aerospace propulsion systems where the Ni-superalloy based material has to withstand high operating temperatures. In this contribution suspension plasma sprayed YSZ TBC coating was applied on the spike contour of an additively manufactured aerospike engine demonstrator. The engine was designed for a hydrogen peroxide / kerosene 6 kN thrust at 2.0 MPa chamber pressure and was manufactured from nickel-based superalloy Inconel 718 powder using the laser powder bed fusion process (LPBF). Due to the novelty of the application of suspension sprayed YSZ thermal protection coatings on additively manufactured Inconel 718 components, extensive tests were necessary to characterize the interaction between the coating and the component.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 123-129, May 4–6, 2022,
Abstract
View Papertitled, A Novel Method of Fabricating Water-Cooled Heat Sinks with Complex Internal Structures Using Wire-Arc Spray
View
PDF
for content titled, A Novel Method of Fabricating Water-Cooled Heat Sinks with Complex Internal Structures Using Wire-Arc Spray
Miniaturization and performance improvements of electronic devices in recent decades have significantly increased heat dissipation rates. To overcome this, researchers have developed heat sinks with miniature fluid channels to maintain small device footprints with increased heat transfer performance. These channels are often fabricated using either subtractive fabrication methods, such as etching or micro-milling, or additive methods such as direct metal laser sintering (DMLS). These methods are limited by their long processing times, low geometric accuracy, or high cost. To overcome these limitations, a novel additive manufacturing method is developed using twin wire-arc spray. Wire-arc spray was used to build complex aluminum structures with length scales varying from 0.5 mm to 74 mm. Surface structures were built on a metal plate by spraying aluminum through a 3D printed polymer mask. Internal flow passages were made by filling surface channels with a water-soluble polyvinyl alcohol (PVA) paste that was allowed to harden, spraying metal over it, and then dissolving the PVA. The influence of wire-arc spray process parameters, such as standoff distance and scanning speed, on coating solid PVA with aluminum, were also investigated.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 226-232, May 4–6, 2022,
Abstract
View Papertitled, Measurement Routine for Analysing the Thermal Impact of Additive Manufacturing Processes on Deformation
View
PDF
for content titled, Measurement Routine for Analysing the Thermal Impact of Additive Manufacturing Processes on Deformation
Additive Manufacturing processes such as laser metal deposition (LMD) are often used in repairing processes where material is deposited onto existing components. During the LMD process, thermal stresses and deformations of the substrate can occur. This deformation results from a multitude of effects throughout the manufacturing process. To precisely measure the time-temperature-deformation history, an experimental setup combining in situ deformation measurement and thermography is conceived. 3D deformations are measured using a stereo camera system observing a stochastically distributed speckle pattern applied on the surface of the substrate. Additionally, the temperature is measured on the underside of the substrate by means of thermal camera. Material is applied using LMD on the opposite side of the measurement therefore there is no chance of the laser beam interfering with the optical measurement of temperature and deformation or damaging the measurement equipment. Due to the areal nature of the measurement system chosen, it is possible to achieve high temporal and spatial resolution to identify critical heat distributions and welding path strategies, which lead to deformation. This work proposes a novel measurement setup and provides possible use cases for optimizing path planning during additive manufacturing processes based on three exemplary path geometries.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 249-258, May 4–6, 2022,
Abstract
View Papertitled, Increase in Surface Strength by Hammering and Solid Rolling of Volumes Produced by Means of Extreme High-Speed Laser Material Deposition
View
PDF
for content titled, Increase in Surface Strength by Hammering and Solid Rolling of Volumes Produced by Means of Extreme High-Speed Laser Material Deposition
In the field of additive manufacturing, the demand for Extreme High-Speed Laser Material Deposition (EHLA) is increasing due to its unique process characteristics, economic efficiency as well as its great resource efficiency. The process is currently mostly used for surface functionalization through coating, by means of corrosion and wear protection. Thereby, almost all materials can be processed and nearly all material combinations can be created. The layers produced are dense and metallurgical bonded, and furthermore the surface roughness produced is low, so that only 20-100 μm has to be removed to produce a finished surface. However, it can also be used for the generation of 3D geometries. The greatest cost factor in the production is the coating material. With increasing requirements, for example in wear protection, cost-intensive special alloys or materials must be used. An opportunity to increase the areas of application in the field of wear resistance as well as increasing material efficiency is offered by combining EHLA with the innovative post-processing methods of hammering, solid as well as smooth rolling. Using these processes, the surface roughness can be reduced to a value of Rz 1-3 μm on the one hand and the surface hardness can be increased on the other hand. The hammering and solid rolling processes differ in their depth of impact. In the case of hammering, the impact depth can be a few millimeters and in the case of solid rolling only a few tenths of a millimeter. So far, the influence of hammering or solid rolling of additive manufactured volumes or surfaces has not been investigated. In the context of this study, the influence of hammering and solid rolling on a volume produced with EHLA is investigated. For this purpose, an EHLA produced volume of IN718 is built up and the influence of hammering as well as solid rolling on the surface roughness and hardness is analyzed.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 356-363, May 4–6, 2022,
Abstract
View Papertitled, Exploring Miniaturized HVOF Systems for the Deposition and Near Net Shape Forming of Ti-6Al-4V
View
PDF
for content titled, Exploring Miniaturized HVOF Systems for the Deposition and Near Net Shape Forming of Ti-6Al-4V
The exceptional properties of Ti-6Al-4V of high strength, lightweight, corrosion resistance and machinability make it one of the most widely used alloys in in the aerospace industry. Significant efforts are underway to establish powder bed additive manufacturing (AM) technologies for Ti-6Al-4V. There are also increasing attempts to use thermal and cold spray to build near net shape parts with buildup rates orders of magnitude higher than powder bed. Thermal spraying, such as HVOF, can oxidize and degrade the alloy due to the high processing temperature. Lowering the flame temperature through inert gas addition in full-size HVOF systems is a possible approach to retain solid state deposition of the feedstock particles, thereby limiting oxidation and detrimental α-case formation, while providing sufficient heat input for particle softening and plastic deformation at impact. Novel miniaturized HVOF systems, with spray jets of only a few millimetre in width, may further offer the possibility to improve the spatial resolution of the buildup for near net shape forming. The process parameter range for solid state deposition of Ti-6A-4V, using the liquid fuelled TAFA Model 825 JPid and the novel hydrogen fuelled Spraywerx ID-NOVA MK-6 with the addition of nitrogen will be discussed. Build-ups at over 80% deposition efficiency generally yield as-sprayed porosities below 3% and hardness above 200 HV100gf. Attainable microstructures and oxygen content as a function of spray parameters are delineated. Recrystallization and beta annealing of selected samples lowered the residual porosity and created equiaxed α and intergranular ß-phases. Ultimate tensile strengths of up to 1100 MPa were attained, however, at limited elongation.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 645-653, May 4–6, 2022,
Abstract
View Papertitled, Performance of Suspension Sprayed YSZ Thermal Barrier Coatings on Inconel 718 Substrates Produced by Laser Powder Bed Fusion
View
PDF
for content titled, Performance of Suspension Sprayed YSZ Thermal Barrier Coatings on Inconel 718 Substrates Produced by Laser Powder Bed Fusion
Additive Manufacturing (AM) processes offer geometrical freedom to design complex shaped parts that cannot be manufactured with conventional processes. This leads to new applications including aerospace propulsion systems where the Ni-superalloy based material has to withstand high operating temperatures. In this contribution, the influence of heat treatment and surface conditioning of the additively manufactured Inconel 718 substrates on the thermocycling performance of suspension sprayed YSZ coatings was investigated. The different surface conditions included as-built, sandblasted and milled substrate surfaces with and without heat treatment. YSZ coatings were applied using suspension plasma spraying (SPS) with commercial available suspensions. Thermal cycling tests (FCT) at 1100°C, 1300 °C, and 1500 °C were applied to coating systems until failure occurred. The microstructures of the samples were characterized before and after thermal cycling. The performance of the coatings was mainly influenced by the coating morphology and FCT test conditions and less by the state of the AM substrates. Columnar-like YSZ SPS sprayed coatings on AM Inconel 718 substrates seemed to be a promising candidate for rocket engine applications.
Proceedings Papers
Coating of Aluminium with High Deposition Rates Through Extreme High-Speed Laser Material Deposition
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 701-708, May 4–6, 2022,
Abstract
View Papertitled, Coating of Aluminium with High Deposition Rates Through Extreme High-Speed Laser Material Deposition
View
PDF
for content titled, Coating of Aluminium with High Deposition Rates Through Extreme High-Speed Laser Material Deposition
In the past few years, the Extreme High-Speed Laser Material Deposition (EHLA) process has been used as a coating technology alongside conventional processes due to its unique process characteristics and is an economical and sustainable alternative to traditional technologies. The essential characteristic of the process is that the main energy is absorbed by the powder particles so that they reach the substrate surface in a molten state. Thereby, metallurgically bonded and dense wear and corrosion protection coatings are generated. This leads to significantly higher surface and deposition rates can be achieved in comparison to Laser Material Deposition (LMD), and heat-sensitive substrates can be coated. Moreover, in addition to this resource efficiency, the process is not only economically attractive but also sustainable. To reduce component weights as well as secondary energy consumption, aluminium has become an essential base material in most industrial sectors. Aluminium is not simple to process and the wear resistance is small due to the low hardness in comparison to widely used steels. Various technology solutions are currently being investigated for the coating of aluminium. The low melting temperature of aluminium (approx. 750 °C) poses a great challenge when coating with, for example, iron-based alloys. Another challenge for laser-based systems is the reflectance of aluminium in the wavelength range approx. between 1030-1070 nm of conventional laser beam sources. The high degree of reflection of aluminium is the reason why additive processing quiet challenging is. Therefore, for conventional laser-based processes, laser beam sources in other wavelength spectra, e.g. green or blue, are being developed to improve the processing of aluminium. Currently, commercially available multi-kW lasers in the visible light spectrum are still below the available power of IR beam sources. In the context of this study, the feasibility of coating aluminium using EHLA is investigated. A high power 8 kW IR disk laser of the TRUMPF company is used to determine the maximum possible deposition and surface rate.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 840-842, May 4–6, 2022,
Abstract
View Papertitled, Digital Process Chains for 3D Laser Cladding and LMD/DED Additive Manufacturing
View
PDF
for content titled, Digital Process Chains for 3D Laser Cladding and LMD/DED Additive Manufacturing
Laser cladding or metal deposition (LMD/DED) is widely used for wear-resistant coatings, repair and additive manufacturing applications due to the excellent properties of the deposited material. However, processes on complex 3D surfaces are often a challenge because they require time-consuming programming. This is particularly the case when no CAD data is available for the parts on which metal coatings or structures have to be applied. As a solution, we describe a digital process chain that begins with a 3D scanning process within the laser cladding machine (either robotic or CNC type). Using special software, high-quality 3D models of the scanned parts are created. For coating applications, these models are visualized on a PC. The operator can define cladding areas with just a few clicks of the mouse. Based on predefined parameters, powerful software calculates all the required tool paths. An additional simulation step can be used to verify collision-free operation. Finally, robot or CNC programs are automatically generated that can be executed immediately. Similar software is used to create 3D parts directly from CAD files. Finally, by combining both approaches, 3D geometries can be printed directly onto existing 3D freeform parts using laser metal deposition/LMD, even if their shape is arbitrary and not well documented by CAD data.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 951-960, May 4–6, 2022,
Abstract
View Papertitled, Additive Manufacturing Feasibility of WC-17Co Cermet Parts by Laser Powder Bed Fusion
View
PDF
for content titled, Additive Manufacturing Feasibility of WC-17Co Cermet Parts by Laser Powder Bed Fusion
Cermets are composite materials consisting of a ceramic reinforcement and a metal matrix. Conventional tungsten carbide cermet parts containing a cobalt matrix phase are mainly produced by powder sintering. Laser Powder Bed Fusion (L-PBF) is an additive manufacturing technology widely applied for direct fabrication of metal functional parts with complex geometry. The present paper deals with the feasibility study of additive manufacturing of cermet parts by L-PBF using WC-17Co powder. The results showed that parametric optimisation of the L-PBF process allowed the production of solid WC-17Co part. Structural analysis revealed the presence of significant porosity (1.41%) and small-scale cracks in the as-built samples. Post-processing, such as HIP (Hot Isostatic Pressure) significantly improved the structure of manufactured parts. The porosity after HIP was very low (0.01%) and phase analysis revealed that the samples after HIP did not contain the fragile W 2 C phase. Abrasive wear tests showed that the wear resistance performance of additively manufactured parts was comparable to a reference produced by powder sintering. High values of hardness (around 1100 HV 30 ) were observed for the as-built and HIP samples. The study successfully demonstrated the possibility of manufacturing wear-resistant cermet parts by L-PBF.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 274-277, May 24–28, 2021,
Abstract
View Papertitled, Effect of 316L Stainless Steel Powder Characteristics on Selective Laser Melting Process
View
PDF
for content titled, Effect of 316L Stainless Steel Powder Characteristics on Selective Laser Melting Process
The product quality of selective laser melting (SLM) is closely related to the alloy powder characteristics, including the size distribution and the oxygen content. In this work, the 316L stainless steel powder was prepared by a vacuum atomization furnace and sieved into a normal-sized distribution range from 15 to 53 μm with a median diameter of 37.4 μm, and a fine-sized distribution range from 10 to 38 μm with a median diameter of 18.9 μm. Then they were mixed with each other in different proportions. The results show that, under the condition of the same SLM parameters, the SLM part, with adding a large amount of fine-sized powder, has a lower density and strength, as well as more holes and spheroidized particles, compared with the SLM part with adding a small amount of finer-sized powder. Furthermore, the 316L stainless steel powder with a high oxygen content was prepared by a non-vacuum atomization furnace. Although the 316L stainless steel powder with a high oxygen content can be evenly spread in the SLM process, the surface layer of the powder is easy to form an oxide film during the cooling and solidification of powder inside the molten pool. Under the action of thermal stress, the small crack forms and expands along the oxide film, eventually leading to large cracks inside the melt channel.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 657-663, May 24–28, 2021,
Abstract
View Papertitled, Hydrogen Generation Supports Plasma Wire Arc Metal Additive Manufacturing Powder Production
View
PDF
for content titled, Hydrogen Generation Supports Plasma Wire Arc Metal Additive Manufacturing Powder Production
Wire atomization processes used to make refractory and high temperature alloy powders are relatively expensive due to the cost of feedstock, energy, and gas. A new process based on Transferred Arc Wire Atomization technology, however, has the potential to overcome these problems. This paper introduces the innovative process which, in combination with hydrogen generation, presents new opportunities for several alloys that can be more easily processed by plasma wire atomization. The new approach shows promise to reduce both fixed and variable costs for certain refractory and high temperature materials.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 802-809, May 26–29, 2019,
Abstract
View Papertitled, Hybrid Additive Manufacture of 316L Stainless Steel with Cold Spray and Selective Laser Melting: Microstructure, Mechanical Properties, and Case Study
View
PDF
for content titled, Hybrid Additive Manufacture of 316L Stainless Steel with Cold Spray and Selective Laser Melting: Microstructure, Mechanical Properties, and Case Study
In this work, a novel additive manufacturing process was proposed and employed in the production of stainless steel components. The underlying concept is to use selective laser melting (SLM) to fabricate a core structure onto which basic features are added by cold spraying (CS), followed by heat treatment and finish machining. The microstructure and mechanical properties of as-fabricated and heat-treated parts were studied, and interfacial bonding between the SLM core and a typical CS feature was assessed. In the as-fabricated state, it is observed that the CS material has a dendritic structure similar to the feedstock, while the SLM core is characterized by cellular subgrains confined in coarse grain structures. Following heat treatment, interparticle boundaries are less well defined, equiaxed coarse grains and twinning appear, and the extremely fine subgrains in the SLM material are enlarged. Heat treatment is also shown to improve tensile strength in the CS material and interfacial bond strength between the CS features and SLM core.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 880-885, May 26–29, 2019,
Abstract
View Papertitled, Preparation and Application of 316L Stainless Steel Powder for Selective Laser Melting Process
View
PDF
for content titled, Preparation and Application of 316L Stainless Steel Powder for Selective Laser Melting Process
In this work, a 2D axisymmetric model of gas atomization at unsteady state that accounts for break-up and solidification is used to simulate laser melting of gas atomized powder. With an optimal nozzle width of 0.6-1 mm and a nozzle angle of 30-32°, the yield of fine 15-45 μm stainless steel powder, suitable for selective laser melting, is shown to increase from 20% to 35%. The effect of laser power on the melting channel width, microstructure, and mechanical properties of the sample is also investigated.
1