Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-4 of 4
Polycarbonates
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 245-249, June 7–9, 2017,
Abstract
View Paper
PDF
In this study, ball-milled Al 2 O 3 powder was used as a feedstock material for vacuum kinetic spray to deposit hard ceramic Al 2 O 3 coating on a relatively soft polycarbonate substrate. Microstructural and X-ray diffraction analysis of powders and coatings were performed. The results shows that the ball-milled powder has more unstable state than the primary powder. Compared to primary Al 2 O 3 coating the crystallite size and coating thickness of ball-milled Al 2 O 3 coating are smaller and thicker, respectively. Since the ball-milled Al 2 O 3 particles are more easily fragmented during the VKS coating process, it is possible to deposit hard Al 2 O 3 coating on the soft polycarbonate substrate.
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 714-721, May 3–5, 2010,
Abstract
View Paper
PDF
Cold spray deposition of polycarbonate on the various substrates has been investigated. The polycarbonate particles are sieved and accelerated at elevated temperature in air through a DeLaval type nozzle, and are deposited on the metallic and ceramic substrates. The influences of the particle size, the gas temperature, the thermal conductivity and surface roughness of substrate on the deposition process are studied. As a result, the continuous deposits are formed on the metallic substrate. The powder sieved below 300 μm shows better deposition efficiency. Thin film of melted polycarbonate has been formed on the surface of substrate to act as a bonding layer, and its crystalline structure is changed to be amorphous, which is the more stable state for the polycarbonate. The coating seems to be better when the thermal conductivity of metallic substrate is low. For the ceramic substrates, there is no deposition whatever was the thermal conductivity.
Proceedings Papers
ITSC 2001, Thermal Spray 2001: Proceedings from the International Thermal Spray Conference, 361-368, May 28–30, 2001,
Abstract
View Paper
PDF
The high velocity oxy-fuel [HVOF] combustion spray technique has previously been shown to be an excellent solution for depositing crystalline matrix nano-reinforced polymer coatings. Dense polymer coatings can be produced by controlling both the particle dwell time in the HVOF jet and through substrate thermal management. Use of an amorphous matrix material, polycarbonate, will enable the role of matrix crystallinity on the structure and properties of thermally sprayed polymer matrix nanocomposite coatings to be separated from effects resulting from the reinforcing phase. An amorphous, commercial polycarbonate powder with a broad particle size distribution and irregular particle morphology has been successfully deposited by HVOF spraying using hydrogen as fuel gas. Polycarbonate matrix coatings up to 18 mils thick with zero to 10 vol. % loadings of nano-sized hydrophobic and hydrophilic silica, and carbon-black have been sprayed onto Al substrates. Results from optical microscopy. X-ray diffraction, scratch, density, microhardness and dilute-solution viscometry measurements will be presented. These indicate that incorporation of the nanosized filers improved the scratch resistance and microhardness of the coatings by 50 % and 23 %, respectively, relative to sprayed pure polymer. Some degradation of the polymer matrix was also detected, with molecular weight being reduced from 17,000 in the feedstock to ~5,000 in the sprayed deposits. The influence of variations in process parameters such as fuel:oxygen ratio, total gas flow, spray distance, nozzle length, total travel distance, and spray distance/nozzle length ratio on coating structure will also be addressed. The threshold loading of silica in the polycarbonate matrix for which dense coatings can be obtained has also been determined.
Proceedings Papers
ITSC2000, Thermal Spray 2000: Proceedings from the International Thermal Spray Conference, 273-279, May 8–11, 2000,
Abstract
View Paper
PDF
The high velocity oxy-fuel (HVOF) combustion spray technique has been shown previously to be an excellent solution for depositing crystalline matrix nano-reinforced polymer coatings [1]. Dense polymer coatings can be produced by HVOF combustion spraying by controlling particle dwell time in the jet and through substrate thermal management. Use of an amorphous matrix material, polycarbonate, will enable the role of matrix crystallinity on the structure and properties of thermally sprayed polymer composite coatings to be separated from effects resulting from the reinforcing phase. An amorphous, commercial polycarbonate resin with a broad particle size distribution of irregular particle morphology has been successfully deposited. Results from optical microscopy, X-ray diffraction, scratch and density measurements are presented. The influence of variations in process parameters such as spray distance, nozzle length, chiller temperature, fuel: oxygen ratio, and total gas flow rate on coating microstructure are presented.