Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
Polyethylene elastomer
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 563-570, May 26–29, 2019,
Abstract
View Paper
PDF
In this study, icephobic polymer coatings were produced by flame spraying using different process parameters. Process optimization for low-density polyethylene (LDPE) coatings was achieved through design of experiments. The most icephobic coating was produced at a traverse speed of 900 mm/sec and a spraying distance of 250 mm. Although surface roughness affected ice adhesion, thermal effects proved to be the main factor influencing the performance of the coating. The higher the processing temperature, the smoother the surface and the greater the polymer degradation. It is also shown that coating degradation can be caused during post heating steps with similar consequences in the ice-shedding performance of the LDPE coatings.
Proceedings Papers
ITSC2016, Thermal Spray 2016: Proceedings from the International Thermal Spray Conference, 18-23, May 10–12, 2016,
Abstract
View Paper
PDF
This study evaluates the anti-icing properties of flame-sprayed polyethylene (PE) coatings. In laboratory scale icing tests, thermally sprayed polymer coatings showed low ice adhesion compared to metals such as aluminum and stainless steel. The ice adhesion of flame-sprayed PE coatings was found to be roughly seven times lower than that of bulk aluminium and five times lower than that of bulk stainless steel.
Proceedings Papers
ITSC1997, Thermal Spray 1997: Proceedings from the United Thermal Spray Conference, 215-221, September 15–18, 1997,
Abstract
View Paper
PDF
The polyethylene terephtalate (PET) is a polymer with a high melting (265°C) and glass transition (67°C) temperatures, insensitive to moisture and common solvents. Also it has an wide range of mechanical properties attainable by variations of molecular weight, orientation and crystallinity. Due to these characteristics allied with the glass-like transparency, light weight and unbreakable character, PET is used to form high performance bottles for carbonated soft drinks, wines, beers and food packing. The world annual consumption of PET for these purposes is increasing, with impressive prospects for the future. This characteristic leads to other situation. The consumption of energy and natural resources together with the environmental problems caused by disposable plastics, make the engineering and materials scientists try to find for different ways to recycled plastics. The characteristics of PET mentioned above seen to be very proper to use as a material for coating.