Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 134
Stress testing
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 27-33, April 29–May 1, 2024,
Abstract
View Paper
PDF
Extreme High -Speed Laser Cladding (EHLA) is a new process category of laser cladding. In this study, EH-LA layer was characterized by comparing with conventional laser cladding (LC) layer. Basic SUS316L layers, as well as WC-reinforced SUS316L layers, were formed on SUS304 substrates using both LC and EHLA processes. The macroscopic morphology, microstructure, microhardness, wear resistance, and residual stress of the four types of layers were evaluated. As a result, EHLA layers exhibited slightly higher micro-hardness and less wear loss than that of LC layers, despite the presence of more micropores. This can be due to their finer dendritic structures. Furthermore, residual stress of EHLA layer was lower than that of LC layer due to those micropores. Additionally, EHLA can add up to 45 wt.% WC into SUS316L layer without crack formation, resulting in higher wear resistance than that of LC where crack formation occurred at 25 wt.% WC. This enhanced crack resistance in EHLA is believed to be due to the less heat input during deposition.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 444-451, April 29–May 1, 2024,
Abstract
View Paper
PDF
By approaching the glass transition temperature it was possible to realize well quality metallic coatings on two different glasses using Cold Spray deposition, CS. A roughness is introduced on the glass surface and is proportional to the energy deposited. Using the thermal pressure memory effect of glass, Raman spectroscopy mapping allowed determining that the CS introduced a strong heterogeneity of the glass substrate characterized by zones with different cooling rate and residual stress. Using a simplified Eshelby's inclusion approach, it is demonstrated that the residual stress can be in first approximation explained by the introduction of local density fluctuation induced with high cooling rate of micrometric regions related with the impact of the deposited metallic particles.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 580-593, April 29–May 1, 2024,
Abstract
View Paper
PDF
Thermally sprayed wear resistant coatings have proven their effectiveness in many applications. Their benefit is unquestionable in the case of mutual sliding contact or abrasive stress caused by hard particles. However, for the case of dynamic impact loading, either single or cyclic, the lifetime of different types of coatings is rarely described, probably due to the complex influence of many parameters. The paper deals with the evaluation of resistance to dynamic impact loading of two types of HVOF-sprayed Cr3C2-rich binary hardmetal coatings (Cr3C2-42%WC-16%Ni and Cr3C2-37%WC-18%NiCoCr) with respect to the variation of their deposition parameters and compares them to a well established Cr3C2-25%NiCr coating. For each coating, a Wohler-like curve was constructed based on a failure criterion of sudden increase in impact crater volume. Besides, coatings deposition rate, residual stress, microstructure and hardness were evaluated. Differences in the coatings dynamic impact wear resistance was found, related to their residual stress. The failure mechanism and crack propagation mode are analyzed using SEM of impact surface and cross-sections. Deformation and related stress changes in coated systems during dynamic impact loading are described using FEA analyzes.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 148-154, May 22–25, 2023,
Abstract
View Paper
PDF
Alkaline water electrolysis is currently the most promising approach to produce hydrogen. However, a main limitation for large-scale application originates from the significant energy loss caused by the coverage of bubbles on the electrode surface. Here, pore-graded Ni electrodes with a positive and negative gradient porous structure that boosts the desorption and release of gas bubble are reported, resulting in a greatly advanced mass transference. The electrodes are obtained from a blend of Ni and Al via high-pressure cold spray. The gradient porosity is realized by varying the addition of Al and chemical etching. As-sprayed electrodes are annealed to eliminate the residual stress and strengthen the adhesion of layers, hence improving their durability. As a result, the electrode with a positive pore-graded structure exhibits a better HER/OER performance when tested with a carbon rob counter electrode. Notably, when tested with an annulus counter electrode of Nickel foam, the electrode with a negative pore-graded structure achieves minimal HER/OER overpotential, outperforming other porous electrodes. This is benefited from improved bubble removal and mass transference capability. All prepared electrodes showed an excellent stability that after 500 cycles of HER/OER test without a large potential fluctuation.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 266-272, May 22–25, 2023,
Abstract
View Paper
PDF
Cold spraying (CS) of high strength materials, e.g., Inconel 625 is still challenging due to the limited material deformability and thus high critical velocities. Further fine tuning and optimization of cold spray process parameters is required, to reach higher particle impact velocities as well as temperatures, while avoiding nozzle clogging. Only then, sufficiently high amounts of well-bonded particle-substrate and particle-particle interfaces can be achieved, assuring high cohesive strength and minimum amounts of porosities. In this study, Inconel 625 powder was cold sprayed on carbon steel substrates using N 2 as propellant gas under different refined spray parameter sets and powder sizes for a systematic evaluation. Coating microstructure, porosity, electrical conductivity, hardness, cohesive strength and residual stress were characterized in as-sprayed condition. Increasing the process gas temperature or pressure leads to low coating porosity of less than 1 % and higher electrical conductivity. The as-sprayed coatings show microstructures with highly deformed particles and well bonded internal boundaries. X-ray diffraction reveals that powder and deposits are present as γ- solid-solution phase without any precipitations. By work hardening and peening effects, the deposits show high microhardness and compressive residual stresses. With close to bulk material properties, the optimized deposits should fulfill criteria for industrial applications.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 357-364, May 22–25, 2023,
Abstract
View Paper
PDF
In the current work, a NiCrAlY and Fe-based alloy are HVOF-sprayed due to the combination of high coating density and customizable coating properties. The oxygen to fuel gas ratio was varied to modify coating defects in a targeted manner. The results demonstrate material dependent defect mechanisms. Further investigations regarded residual stresses, hardness, and electrical conductivity. In particular, the thermal diffusivity proved to be very promising. Moreover, the coatings were compared with previous work on arc-sprayed coatings of similar chemical composition regarding insulation capability.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 172-178, May 4–6, 2022,
Abstract
View Paper
PDF
Cermet double carbide coatings (WC-Cr 3 C 2 -Ni) were HVOF sprayed onto magnesium substrate. The variable parameter was spray distance (320, 360 and 400 mm). The microstructure of the coatings has been characterized by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). Additional, porosity and residual stress have been estimated. Phase composition of WC-Cr 3 C 2 -Ni cermet coatings consists of hexagonal WC carbide, as well as the Cr 3 C 2 and Cr 7 C 3 carbides. For the longest spray distance, minor presence of WC 6 O 6 was detected, most likely as an effect of higher spraying distance, leading to partially oxidation of WC at powders particles boundaries. Comparing lattice parameters with model data it should be noted that no significant contribution of stress is present, due to minor changes in WC lattice parameters in comparison to ICDD data. It also should be noted that Cr 7 C 3 carbide in WC-Cr 3 C 2 -Ni coating has different lattice parameters than ICDD data what shows its reactive nature. In obtained results it is clearly seen, that residual stress have the lowest values for coating sprayed from the shorter distance. This tendency is visible for both, linear and shear stress. The crystallite sizes are also the smallest for the shorter spray distance. Such fine structure shows a tendency to good redistribute of the thermal stress in the sprayed coating and also on the coating-substrate interface.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 288-298, May 4–6, 2022,
Abstract
View Paper
PDF
Hot section components of stationary gas turbines such as turbine blades are coated with thermal barrier coatings (TBCs) to increase the high thermal strain tolerance thereby the improvement of the performance for the gas turbines. TBCs represent high-performance ceramics and are mostly composed of yttria-stabilized zirconia (YSZ) in order to fulfil the function of thermal insulation. The microstructure of conventional TBCs should be porous to decrease heat conduction. Besides porous TBCs, the recently developed vertically segmented thermal barrier coatings (s-TBCs) feature outstanding thermal durability. In this work, process parameter development for atmospheric plasma spraying (APS) of s-TBCs is presented. Within the experiments, relevant process parameters such as powder feed rate, surface speed and pathway strategy have been optimized. The aim of this work is to achieve a combination of low internal residual stress and high adhesive tensile strength for s-TBCs. For the formation of vertical cracks, the heat input into the powder feedstock material and the substrate must be controlled precisely.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 928-938, May 4–6, 2022,
Abstract
View Paper
PDF
In recent years, laser-based post-processing of thermally sprayed coatings has gained significant attention as an alternative post-processing route; to mitigate the microstructural defects such as pores, microcracks, and splat boundaries associated with thermally sprayed coatings. Optimisation of the parameters for the laser post-processing is of paramount importance to maintain the required properties of these coatings. The current thermo-mechanical model simulates the impact of laser heat treatment on thermally sprayed Tungsten Carbide Cobalt (WC-17Co) coating and AISI 316L as substrate. A sequentially coupled transient thermal and structural analysis is performed. Transient temperature field from thermal analysis due to laser source will become input loads for the subsequent stress-strain analysis with appropriate boundary conditions. Both the coating and substrate are given temperature-dependent material properties. A gaussian heat flux distribution is used to model the laser source. The finite element analysis results underline the importance of temperature gradients and the presence of thermally induced stress-strain fields responsible for promoting coating degradation. The obtained results also revealed that heat input and dimensional characteristics play a vital role in the annealing treatment's efficacy. Three separate test cases were considered wherein the hatch spacing was varied, keeping the other parameters (scan speed, laser power, and laser spot diameter) constant. The impact of hatch spacing on the temperature and residual stress distribution across the coating was assessed by this simulation. Residual compressive stress was observed in the coating for two out of the three test cases, which further improved the durability of the coating.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 197-202, May 24–28, 2021,
Abstract
View Paper
PDF
Residual stress can be developed in most thermally sprayed coatings due to the momentum of molten particles during impact, and heat transfer during solidification of the splats. Another reason for residual stress built-up in thermally sprayed coatings is due to splat curl-up during solidification and the differences in thermal expansion coefficients between the coating and the substrate. However, in the cold spraying process, it is believed that the main reason for residual stress formation is plastic deformation during impact and flattening of solid particles. Residual stresses can drastically influence coating quality and reduce its service time. In this study, residual stress is measured for two well-known nickel based super alloys (Inconel 625 and Inconel 718) deposited on 7074 aluminum alloy substrates by the cold spraying technique. Residual stress in Inconel 625 was found to be highly tensile on the surface and compressive on the subsurfaces. After heat treatment the residual stress was relieved and was compressive in nature. Whereas for Inconel 718, residual stress was compressive on the surface and tensile on the subsurfaces in the as-sprayed condition. After heat treatment, the residual stress was compressive with increased magnitude. The heat treatment at 800°C made the residual stress more compressive. The porosities of both Inconel 625 and Inconel 718 were reduced after heat treatment.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 261-267, May 24–28, 2021,
Abstract
View Paper
PDF
The understanding of residual stress is of critical importance in the cold spray and thermal spray processes. It has a direct effect on the integrity of the coating related to the adhesion strength, fatigue life, and can lead to undesired effects such as the delamination of the coating. In cold spray, several investigations have evaluated the impact of the residual stress on the coatings, and it is generally accepted that cold spray coatings follow a similar profile to those obtained in the shot peening process. Although the measurement of residual stresses gives fundamental insight into the process, the estimation of such stresses considering the deposition of each layer by numerical methods has not been extensively studied. This work proposes a method for analyzing the evolution of residual stress on a cold spray coating, both on the coating and the substrate, as a function of the deposited layers, using Finite Element Analysis (FEA). The evolution of the residual stress profile with the coating thickness was obtained along the transverse direction. The results were compared to experimental and numerical data from previous studies. The influence of the deposition of each layer on the residual stress profile has been discussed.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 838-845, May 26–29, 2019,
Abstract
View Paper
PDF
This study investigates the effect of thermal cycling on cold-spray chromium coatings deposited on steel substrates. First, equilibrium stress states are determined for different coating thicknesses. Next, the potential for crack initiation and growth is simulated based on periodic heating and cooling cycles. The corresponding crack driving forces are characterized using interface stresses and energy release rate as a function of the thermal cycles. The effects of coating thickness, embedded microcracks, and initial residual stress on the driving forces are investigated systematically to demonstrate the risk of coating fracture and delamination.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 916-922, May 26–29, 2019,
Abstract
View Paper
PDF
In recent studies, crack formation was observed in oxidized areas of wire-arc sprayed Zn-Al coatings. As corrosion tests show, these cracks allow electrolyte to penetrate the coating, reducing effective service lifetime. Wire-arc sprayed coatings usually exhibit tensile residual stresses with the potential to cause such cracking. To determine the extent of that potential, the stress state of Zn-Al coatings was measured and correlated with corrosion test results. Residual stress was obtained using the sin2ψ method based on XRD analysis and the results are combined with those of previous studies, forming a hypothesis for the root cause of crack formation in wire-arc sprayed Zn-Al coatings, its effects, and its control.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 29-36, May 26–29, 2019,
Abstract
View Paper
PDF
In this study, Ni-alloy 718 coatings are deposited on substrates of the same material using laser assisted cold spraying (LACS). The laser heats the substrate surface making it more ductile and expands the metallurgically bonded region. Coatings deposited at various track spacings and surface temperatures are examined to assess coating quality, level of deformation and recrystallisation, and the effect of different track spacings on surface roughness and waviness. A track spacing of 3.5 mm was found to provide the most even coverage with the laser. Surface X-ray diffraction measures residual stress for different layers at various surface temperatures while incremental hole drilling measures stress profiles for coatings of varying thickness. All coatings were found to be well bonded with low porosity.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 53-58, May 26–29, 2019,
Abstract
View Paper
PDF
Cold spraying is a promising process for fabricating functional coatings. Because of the solid-state particle deposition, the electrical and chemical properties of the coatings are similar to those of the bulk materials. Mechanical properties, on the other hand, differ from those of bulk materials due to severe plastic deformation of the particles. Residual stress may thus be an important variable to track during cold spraying although the formation mechanism is not entirely clear. In this study, the residual stress of metallic (copper) and ceramic (titania) coatings is measured during the cold spray process. The results are presented and discussed.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 306-313, May 26–29, 2019,
Abstract
View Paper
PDF
In this study, WC-Co coatings were deposited on additively manufactured 316L stainless steel substrates by HVOF spraying. Prior to spraying, the SLM parts were exposed to various mechanical pretreatments, before and after which their surface topography and residual stress state were assessed. After spraying, Vickers indentation tests were conducted to assess interfacial bond strength between the coating and substrate. To differentiate between topographical effects and residual stress related phenomena, stress-relief heat treatments were conducted at various points in the investigation.
Proceedings Papers
ITSC 2018, Thermal Spray 2018: Proceedings from the International Thermal Spray Conference, 62-68, May 7–10, 2018,
Abstract
View Paper
PDF
The metal finishing process of electrolytic hard chrome (EHC) plating has been identified as a source of environmental pollution in most industrialized countries like Australia, Europe and USA. The key driver for the technology replacement is that the EHC plating process uses hexavalent chromium, which is a known carcinogen. Our previous research has identified that cold spray nanostructured tungsten carbide cobalt (WC-Co) coatings can be a suitable alternative to provide a functional coating in wear applications. This work explores at another similar technology- Kinetic Metallization for deposition of WC-Co coatings. In this work, the objective is to characterize the residual stress profile of these WC-Co coatings that are deposited by the latest KM systems. These coating systems are used in critical applications such as landing gear pistons and axle journals, hydraulic rods, engine shaft journals, and numerous other external surfaces that operate under high cyclic loading conditions. As such, the residual stress developed during the KM coating process has a significant influence on the fatigue properties of the components. Thus, knowledge of stresses and their linkage with other properties and production parameters is essential for the quality control of these critical structures.
Proceedings Papers
ITSC 2018, Thermal Spray 2018: Proceedings from the International Thermal Spray Conference, 227-232, May 7–10, 2018,
Abstract
View Paper
PDF
Cold spray is a technology with great potential for additive manufacturing applications. Due to the high levels of plastic deformation experienced by the powder during the coating process, any deposit will require heat treatment post-spraying to improve ductility and fatigue strength. In extreme cases, the residual stresses from coating can cause delamination or compromise the bond strength when subsequent cold spray layers are deposited. This work details the use of a commercial CO 2 laser cutter to perform a surface heat treatment on single lines of cold sprayed aluminium, to relieve residual stresses. The effect of laser power and traverse speed on material hardness is quantified, and compared with as sprayed deposits. The results shown in this work demonstrate the potential for in-process heat treatment to reduce post-processing time and improve coating quality by reducing residual stresses.
Proceedings Papers
ITSC 2018, Thermal Spray 2018: Proceedings from the International Thermal Spray Conference, 278-285, May 7–10, 2018,
Abstract
View Paper
PDF
A contact model that accounts for interfacial cohesion and thermal conduction is developed to investigate the influence of bonding on the final residual stresses build-up in cold spray. The residual stress evolution in the cold sprayed Al-6061 coating on an Al-6061 substrate is investigated via three-dimensional (3D) single-particle and multi-particle impact simulations. It is shown that the interface bonding mainly affects the local residual stress distribution near the interfaces. The residual stresses are largely due to the kinetic peening and bonding effects. The thermal cooling has negligible influence. In general, the peening effect introduces a compressive stress while the bonding effect results in a relaxation to this compressive stress. This work suggests that the interface bonding should be considered as one of the essential factors in numerical modeling of the residual stresses evolution in cold spray.
Proceedings Papers
ITSC 2018, Thermal Spray 2018: Proceedings from the International Thermal Spray Conference, 490-495, May 7–10, 2018,
Abstract
View Paper
PDF
Thermally sprayed coatings have residual stresses due to the processing techniques where the particles go through thermal softening / melting, high velocity impact and rapid solidification. The nature and magnitude of residual stresses in these coatings determine the bond strength and failure mechanisms. This investigation thus involves a non-destructive neutron diffraction residual stress evaluation of suspension high-velocity oxy-fuel (S-HVOF) thermal sprayed alumina and YSZ coatings onto 304 stainless steel substrates. SHVOF spray is a high deposition efficiency process to deposit coatings from sub-micron or nanometric feedstock particles. Neutron diffraction measurements were performed at the UK ISIS facility, using ENGIN-X pulsed neutron diffractometer to obtain through thickness residual stress profiles. The Z-scanning method was used to avoid pseudo-strains in the neutron diffraction measurements near the coating surface whereby the incident neutron beam/gauge volume was partially submerged and traversed vertically out of the horizontal coating surface. The residual stress in the alumina coating was compressive across the whole thickness while the stress changed from tensile to compressive in the YSZ coatings. The residual stress measurements were complemented by lab based X-ray diffraction residual stress measurement techniques. Depth sensing indention of the coatings were also performed to gain a comprehensive understanding of the stresses in SHVOF sprayed ceramic coatings.
1