Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 514
Particle analysis
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 514-519, April 29–May 1, 2024,
Abstract
View Paper
PDF
Thick deposits were produced from pure Al powder of three different sieve sizes using cold spraying at the same process parameters. The in-plane mechanical and fracture properties of the deposits were investigated using bending of small specimens in four specimen orientations. It was shown that increasing the Al particle size by approximately 50% and 100% leads to small, but statistically significant differences of yield strength. Further, the increase in the powder particle size led to higher fracture toughness K IC but lower fatigue crack growth threshold ΔK thr . This can be attributed to two different fracture mechanisms in the cold sprayed deposits. A trans-particular fracture in the near-threshold fatigue regime is controlled by the microstructure and work hardening of the particles. At higher cyclic loads and in quasi-static regime, the particle decohesion and the resulting crack path determine the fracture behavior instead. However, the observed effect of particle size was rather small, much smaller than the effect of spray process parameters observed in the previous research.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 528-534, April 29–May 1, 2024,
Abstract
View Paper
PDF
The deformation behavior of particles plays a significant role in achieving adhesion during cold spray. The deformation behavior of the particles is associated with the fracture of the oxide layer and recrystallization, which are the key elements of the quality of cold spray. Studies of particle compression have been made to understand the deformation behavior of a particle. However, the deformation behavior of particle under controlled load and precise and high strain rate is yet to be studied. Here, we show the oxide layer fracture pattern and recrystallization regime under controlled load with a precise and high strain rate. We found that the cracks in the oxide layer initially appeared on the equator of the particle and propagated towards the edge of the top surface. Meanwhile, on the top surface, the circumferential crack was developed. On the other hand, the nanoindentation result showed that the compressed particle under a high strain rate has an unusual load-displacement behavior. Our results demonstrate that the oxide layer fracture behavior corresponds to the adhesion mechanism suggested by previous studies. Our study also revealed that recrystallization takes place within the particle under a high strain rate. We anticipate this finding to give a general insight into the deformation behavior of particles during cold spray. For instance, since the recrystallization behavior at a given strain rate can be predicted through this study, the resultant grain size and shape, which is associated with mechanical properties, can also be predicted. Furthermore, the amount of strain and strain rate to form optimal adhesion can be evaluated.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 689-695, April 29–May 1, 2024,
Abstract
View Paper
PDF
In plasma spraying, H2 or N2 is commonly added to the primary Ar plasma which may increase the specific enthalpy, thermal conductivity and thus improve the process efficiency. The objective of this study is to provide a process characterization of a three-cathode plasma torch with various binary gas compositions. Several process diagnostics are used to characterize the impact of binary plasma gas mixtures in plasma spraying. High-speed video analysis is utilized to capture the jet fluctuations of the studied process parameters. In addition, current and voltage measurements are performed to further complement the plasma diagnostics. The impact of the binary plasma gas mixtures is determined using particle diagnostic system DPV-2000 by measuring the particle in-flight properties of Al 2 O 3 feedstock. Furthermore, the deposition efficiency (DE) of the investigated process parameters is determined. The results show that at the identical volumetric flow rate and current, the addition of H2 yields the highest particle temperatures, followed by Ar/N2 mixtures and pure Ar plasma. In reverse order, pure Ar plasma results in the highest particle velocities. In addition, the increased DE of plasma spraying with binary gas mixtures for Al 2 O 3 coatings offers the potential to increase the deposition rate of other ceramic materials. This study provides a comprehensive correlation between plasma and particle diagnostics and the deposition efficiency of binary plasma gas mixtures.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 610-617, May 22–25, 2023,
Abstract
View Paper
PDF
Oxygen present in the High Velocity Air-Fuel (HVAF) process can react with the in-flight metallic particles and cause their oxidation. A grown brittle oxide shell on metallic microsize particles can reduce their deposition efficiency and impair the coating final deposited properties/microstructure. In the current study, the oxide growth of MCrAlY particles, where M stands for Ni and Co, during their flight in the HVAF process has been modeled using the particle tracking scheme. A comprehensive theoretical oxide layer growth background is presented and used to track the particle oxidation process. The oxidation development includes the Mott-Cabrera theory for very thin films, which is function of the particle surrounding temperature and oxygen partial pressure. The very thin film regime, applicable under a limiting thickness, is defined based on the electric field present across the growing oxide layer. As the electric field decreases with oxide thickness, the oxidation rate is determined by thermal diffusion. The obtained results provide a correlation between HVAF system design and surface oxidation phenomena while offering a clear description of different oxidation stages.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 618-624, May 22–25, 2023,
Abstract
View Paper
PDF
The deposition of MCrAlX coatings (where M is Ni, Co, Fe, or a combination of these, and X is Y, Si, Ta, Hf, or a combination of these) via thermal spraying has acquired significant importance in industries such as aerospace, power plants, oil, and gas, etc. Among various thermal spray deposition techniques, high-velocity air fuel (HVAF) has shown a growing potential for the deposition of metallic powders which are sensitive to high-temperature oxidation during spraying. Thus, it is essential to understand the in-flight behavior of these metallic particles in the high-velocity, low-temperature HVAF flame. In this work, a NiCoCrAlY powder was sprayed using two sets of HVAF deposition parameters onto stainless steel substrates. In-flight particle diagnostic tools such as AccuraSpray were employed to understand the behavior of these spray particles. The deposited particles were comprised of partially molten particles and fully deformed splats. Samples with higher powder feed rates showed a primary coating buildup on the substrate surface. EDS plots revealed no traces of inflight particle oxidation but contained carbon residue due to the presence of unburnt hydrocarbons from the fuel-rich HVAF-M3 torch. This study provides a preliminary understanding towards the significance of deposition parameters on the in-flight particle oxidation behavior and splat deformation characteristics by HVAF spraying.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 640-646, May 22–25, 2023,
Abstract
View Paper
PDF
Aircraft gas turbine blades operate in aggressive, generally oxidizing, atmospheres. A solution to mitigate the degradation and improve the performance of such components is the deposition of thermal barrier coatings (TBCs). Specifically for bond coats in aerospace applications, High Velocity Air Fuel (HVAF) is very efficient for coating deposition. However, internal diameter (ID) HVAF has received little attention in the literature and could be a promising alternative to limit oxidation during spraying when compared to conventional methods. The main objective of this study is to analyze how the ID-HVAF process influences the microstructure of NiCoCrAlY coatings. To that end, an i7 ID-HVAF torch is used to deposit NiCoCrAlY splats on a steel substrate with different stand-off distances. The deposited splats showed the presence of craters, and both partially melted and deformed particles at the surface. The particle velocity data was recorded, and the splat deformation and amount of particles deposited was shown to be directly corelated to the stand-off distance. The material composition analyzed and quantified by Energy Dispersive Spectroscopy (EDS) did not reveal any traces of in-flight of particle oxidation, but further investigation is required. This study provided a preliminary understanding towards the importance of stand-off distance on the splat deformation and in-flight oxidation.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 848-855, May 4–6, 2022,
Abstract
View Paper
PDF
In the past 25 years, we have seen thermal spray processes such as Atmospheric Plasma Spray (APS), High Velocity Oxygen Fuel Spray (HVOF) and Suspension Plasma Spraying (SPS) transition from research and development towards mainstream production technology. Since thermal spraying is a multi-parameter and multi-response process, it is susceptible to process instabilities. Consistency and repeatability are of utmost importance in production lines that spray high volumes of coatings. Since process parameters such as feed rate, particle velocity, temperature, electrode wear and nozzle blockages can dramatically affect the coating properties, monitoring and controlling these parameters can significantly improve the process repeatability. This study presents an improvement in the online process monitoring sensor, the Accuraspray 4.0, to achieve repeatable coatings. The Accuraspray 4.0 introduces a new process stability measurement in order to quantify and control the variability in thermal spray processes and to make process monitoring more production friendly. The sensor includes a stability analysis tool which compares the real-time standard deviations of nominal plume parameters against bench-marked values found using statistical principles. This study details the theory behind the process stability measurement and presents a case study conducted in collaboration with an automotive production facility employing this new feature. It was found that monitoring the standard deviations of parameters being measured can allow the user to control stability in their thermal spray process to spray large volumes with higher confidence in the consistency of their coatings. This upgrade brings the Accuraspray 4.0 one step closer to becoming the industry standard for thermal spray production facilities.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 868-875, May 4–6, 2022,
Abstract
View Paper
PDF
In-flight particle state has been shown to play a crucial role in determining the properties of thermally sprayed coatings. Therefore, process control strategies have been suggested to keep the in-flight particle state constant in order to decrease the variability of coating quality. Such strategies are already used to some extent in industrial applications, where the particle state is measured before starting the coating of a part to make a go/no-go decision based on whether the values are inside a predefined process window. This paper shows the importance of the evaluation procedure of the in-flight particle state, with focus on process control applications. The paper demonstrates this on the example of atmospheric plasma spraying (APS) of yttria-stabilized zirconia (YSZ), using a commercially available sensor system Accuraspray for measuring the ensemble particle temperatures and velocities as descriptors of the in-flight particle state. It is concluded that the stabilization time of the particle jet might be different from what is practically considered. Moreover, the paper investigates an approach of monitoring the in-flight particle state during a coating run without having to install the sensor system on the robot arm.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 984-989, May 4–6, 2022,
Abstract
View Paper
PDF
A computational fluid dynamics model for understanding the HVAF process and the influence of the process parameters on the particle flight properties is investigated. Achieving this objective involves a novel approach to modeling the HVAF process with pressure inlet boundary conditions and integration of the mixing chamber. The study comprises the prediction of the flow fields described by a set of equations consisting of continuity, momentum, energy, and species transport. These equations are then solved with realizable k-ε turbulence model, a two-step chemistry model and eddy dissipation model to simulate the combustion reaction. Consequently, the interaction between the CoNiCrAlY alloy particles and the flow is modeled using a Lagrangian approach considering the forces acting on the particles and the heat transfer. The results show that the combustion chamber pressure is mainly affected by the compressed air and propane parameters. Furthermore, the flight behavior of the smaller particles is significantly influenced by the gas flow, while the larger particles tend to maintain their momentum and energy. Through the simulation model, an in-depth process understanding of the HVAF process can be achieved. More importantly, the model can be used as a tool for efficient process development.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 44-55, May 4–6, 2022,
Abstract
View Paper
PDF
The feasibility of processing various polymers by cold spray has been exemplified by depositions with low porosity and properties comparable to the bulk material. However, cold sprayed polymers are generally deposited with low deposition efficiency compared to more extensively studied metal sprays. Low efficiencies in polymer sprays are attributed to characteristic differences in material properties between metals and polymers. Notably, the thermophysical properties of polymers limit heat transfer and promote intra-particle thermal gradients that develop during cold spray processing. These properties (e.g., thermal conductivity, heat capacity, density) and low deposition efficiencies demand alterations to the cold spray process equipment outside typical metal powder spray conditions. Herein, a modified powder feed tube is used to pre-heat powder to temperatures (~84 °C) below the powder melting point, or cool it (~-55 °C) below room temperature before contacting the high velocity carrier gas in the nozzle of a CSM 108 cold spray system. Numerical simulation demonstrated that pre-heating/cooling the powder feedstock is a viable means of adjusting particle temperature upon impact with the substrate; however, this technique has generally not been deliberately utilized in the cold spray of polymers. In the present work, no significant increase in deposition efficiency (~65% for all sprays) was found by increasing the pre-heat temperature. However, pre-heated particles had a mechanical strength 28% higher than particles injected at room temperature and -55 °C. Despite this, scanning electron microscope images indicated no notable differences between the deposit microstructures. Future works are planned to study the effect of pre-heat at higher particle impact velocities and degrees of pre-heat to improve powder consolidation.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 89-99, May 4–6, 2022,
Abstract
View Paper
PDF
In this work, the possibility of controlling the thermally sprayed TBC microstructure is in order to improve the overall TBC system performance. The control is possible primarily by metallic bond coat surface microtexturization prior to ceramic top coat spraying. Such pretreated bond coat was modeled to investigate the influence of the substrate topography on the plasma stream behavior as well as the feedstock particle thermophysical properties and trajectories in the substrate closest proximity. The microscale computational domain was considered here. It was extracted from entire spraying domain and located in the microtextured substrate boundary layer. Then, advanced flow models were introduced to the governing equations to define heat flux to the substrate, turbulent flow, and plasma jet / feedstock droplets interaction. Feedstock discrete phase was defined by the means of Discrete Phase Model (DPM) including particle drag laws and DPM source modelling. The motivation for this study was to model and investigate the influence of the bond coat microtexturization on the behavior of the feedstock particles in the substrate boundary layer. This opens the possibility of better understanding the TBC build-up mechanism and strictly controlling the microstructure of such TBCs.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 164-171, May 4–6, 2022,
Abstract
View Paper
PDF
High-velocity air-fuel (HVAF) is a combustion process that allows solid-state deposition of metallic particles with minimum oxidation and decomposition. Although HVAF and cold spray are similar in terms of solid-state particle deposition, slightly higher temperature of HVAF may allow further particle softening and in turn more particle deformation upon impact. The present study aims to produce dense Ti-6Al-4V coatings by utilizing an inner-diameter (ID) HVAF gun. The ID gun is considered a scaled-down version of the standard HVAF with a narrower jet, beneficial for near-net-shape manufacturing. To explore the potential of the ID gun in the solid-state deposition process, an investigation was made into the effect of spraying parameters (i.e., spraying distance, fuel pressure, and nozzle length) on the characteristics of in-flight particles and the attributes of the as-fabricated coating such as porosity, oxygen content, and hardness. Using online diagnostics to monitor temperature and velocity of in-flight Ti-6Al-4V particles is challenging due to exothermic oxidation reaction of fine particles, while larger particles are too cold to be detected from their thermal emission. However, DPV diagnostic system was successfully employed to differentiate the non-emitting solid particles from the burning ones. It was found that increasing air and fuel pressure of the ID-HVAF jet led to an increase of the velocity of the in-flight particles, and resulted in improved density and hardness of the as-sprayed samples. However, increasing the spraying distance had a negative effect on the density and hardness of the deposits. It was also observed that the phases of the Ti-6Al-4V deposits were altered by producing vanadium oxide due to the high temperature of the spray jet.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 272-278, May 4–6, 2022,
Abstract
View Paper
PDF
Thermal spray is a widespread technology on the way to large scale production. Driven by industrial importance, companies of all sizes employ this technology, with research mainly driven to improve quality and reduce cost. In order to produce high-quality coatings, efforts have been made to provide on-line process control. To find out which parameters affect coating formation and thus which of these parameters should be monitored high level cost intensive diagnostic systems have to be used. This work introduces selected diagnostic systems for the on-line process control under the condition of serial production: shadow imaging for the particles (PSI), a system to measure particle velocities (PVI) and an integral working system using a qualitatively image algorithm (PFI).
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 389-394, May 4–6, 2022,
Abstract
View Paper
PDF
In cold spray (CS) additive manufacturing process, micrometer scale particles accelerated through a supersonic nozzle are targeted on a surface with velocities in the rage of 300-1500 m/s in solid state. The impact energy of the particles leads them to deform plastically with high shear energy near the impact interface and adhere to the surface metallurgically, mechanically, and chemically. Using CS, deposition of metals, metal matrix composites, and polymers are achieved with high adhesive/cohesive strength and low porosity. Sensitivity of the CS additive manufacturing process to the variabilities in the process parameters are still being understood. Among the process parameters, particle morphology can have significant implications on drag forces, and therefore, on the particle impact velocity. This in turn affects the deposition efficiency (DE) and the quality of products. In this work, a new approach is introduced for computing DE by incorporating particle sphericity and its variation into one-dimensional numerical models. Size, sphericity, and the variability of size and sphericity of aluminum, copper, titanium, and tantalum particles are measured from static optical microscope images. The data is used for predicting impact velocity, temperature, and DE. The model results are then compared with particle velocity measurements.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 676-682, May 4–6, 2022,
Abstract
View Paper
PDF
The present study numerically investigates the effectiveness of co-flowing nozzles for cold spray applications. A convergent-divergent axi-symmetric nozzle system was simulated with high-pressure nitrogen flow. The particle acceleration is modelled by a two-way Lagrangian approach and validated with reference to experimental values reported in the literature. An annular co-flowing nozzle with circular central nozzle was simulated for nitrogen gas flow. The momentum preservation for central nozzle flow was observed, which results in higher particle speed for longer axial distance after nozzle exit. It is envisioned from the outcome that utilization of co-flow can lead to reduction in the divergent section length of cold spray central nozzles, which may ultimately help to address clogging issues for continuous operation. Co-flow operating at 3 MPa, same as with a central nozzle, can increase supersonic core length up to 23.8%.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 789-797, May 4–6, 2022,
Abstract
View Paper
PDF
A solid oxide fuel cell is an electrochemical conversion device that produces electricity directly from oxidizing a fuel. It involves ionic transport and electrochemical reactions where the electrolyte and electrode properties play a major role in performance, along with a range of complementary materials that need to ensure equally relevant functions across the cell. The lifetime of such functional materials is expected to reach many thousands of hours with minimal degradation. This article is centred around the process development, optimization and scale up of a thin plasma sprayed ceramic barrier layer to mitigate long-term performance degradation of metal-supported solid oxide fuel cells. The evolution from the proof of concept in a laboratory environment to the scale up toward large scale manufacturing production is discussed. The challenges associated with minimizing application time and lowering cost while maintaining high coating performance at high yield are discussed. Empirical observations such as microstructural analysis and in-flight particle monitoring are used to gain understanding of the plasma spray process and guide its development for high-volume production. Results show how this effort has led to the reduction of the coating deposition time by 94% to enable large-scale manufacturing at high yield.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 44-50, May 24–28, 2021,
Abstract
View Paper
PDF
In an atmospheric plasma spray (APS) process, in-flight powder particle characteristics, such as the particle velocity and temperature, have significant influence on the coating formation. The nonlinear relationship between the input process parameters and in-flight particle characteristics is thus of paramount importance for coating properties design and quality control. It is also known that the ageing of torch electrodes affects this relationship. In recent years, machine learning algorithms have proven to be able to take into account such complex nonlinear interactions. This work illustrates the application of ensemble methods based on decision tree algorithms to evaluate and to predict in-flight particle temperature and velocity during an APS process considering torch electrodes ageing. Experiments were performed to record simultaneously the input process parameters, the in-flight powder particle characteristics and the electrodes usage time. Various spray durations were considered to emulate industrial coating spray production settings. Random forest and gradient boosting algorithms were used to rank and select the features for the APS process data recorded as the electrodes aged and the corresponding predictive models were compared. The time series aspect of the data will be examined.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 75-78, May 24–28, 2021,
Abstract
View Paper
PDF
Because of their high specific strength, carbon fiber reinforced plastics (CFRPs) are widely used in the aerospace industry. Metallization of CFRP by cold spraying as a surface modification method can improve the low thermal resistance and electrical conductivity of CFRP without the need for high heat input. Herein, we cold spray a Sn coating on cured CFRP substrates and examine the Sn/epoxy interface. The results suggest that the Sn coatings are successfully obtained at a gas temperature of 473 K and indicate no severe damage to the CFRP substrates. The stress and plastic strain distributions at the cross-section of the Sn/CFRP interface when a Sn particle is impacted onto the CFRP substrate are obtained using the finite element method.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 214-220, May 24–28, 2021,
Abstract
View Paper
PDF
In the cold spray process, cross-sectional shape of the nozzle has a significant effect on spray pattern of coatings. The circular exit nozzle is parabolic in shape. So, spray pattern with the rectangular nozzle is wider than that with the circular spray nozzle. The goal of this investigation is to establish a design for the cold spray gun nozzle to gain more uniform spray profile of coatings. We have investigated the influence of expansion ratio, nozzle total length and the ratio of nozzle length of divergent section and parallel section of rectangular nozzle on behaviors of gas and particle by the computational fluid dynamics (CFD) in high pressure cold spraying. We have studied copper particles so far. In this study, we will examine aluminum particles. First, we investigate the influence of the size and shape of the rectangular section nozzle on the velocity, temperature, and particle distribution of aluminum particles by CFD. After that, the rectangular section nozzles were fabricated and coating formation experiments were conducted, spray patterns and coating cross-sectional structures were observed, and coating adhesion was also evaluated. The nozzle material was polybenzimidazole resin, which is difficult for aluminum particles to attach to nozzle walls.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 221-228, May 24–28, 2021,
Abstract
View Paper
PDF
The generation of a high velocity carrier gas flow for cold metal particle applications is addressed, with specific focus on titanium cold spraying. The high hardness of this material makes cold spraying titanium difficult to achieve by industry standard nozzles. The redesign of a commercial conical convergent-divergent cold spray nozzle is achieved by the application of aerospace design codes, based on the Method of Characteristics, towards producing a more isentropic expansion by contouring the nozzle walls. Steady three-dimensional RANS SST k-ω simulations of nitrogen are coupled two-way to particle parcel tracking in the Lagrangian frame of reference. The new contoured nozzle is found to produce higher particle velocities with greater radial spread, when operated at the same conditions/cost of operation as the commercial nozzle. These numerical results have shown the potential for extending cold spray to high density and low ductility particles by relatively minor rig modifications, through an effective synergy between gas dynamics and material science.
1