Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Wrought nickel-chromium alloys
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2000, Thermal Spray 2000: Proceedings from the International Thermal Spray Conference, 385-390, May 8–11, 2000,
Abstract
View Paper
PDF
Substrates protected by thermal spray coatings are usually found intact after use, making them viable candidates for recycling and reuse. The key is to remove the coating without damaging the component. This requires a process that minimizes the development of residual stresses and the associated distortion. The purpose of this work is to determine the optimal descaling technique for Ni-base sheets with a thermal barrier coating. Test specimens were produced following industry procedures. Thin sheets (<3 mm) of Ni-base superalloy were plasma sprayed with a NiCrAlY bond coat and a Y203-stabilized ZrO2 topcoat. The coating layers were then removed using different methods, including pickling, shot blasting, and water jet descaling, and the substrates were assessed based on X-ray diffraction and chord width measurements. The findings of the study show that water jetting removes all surface materials, particularly the bond coat, without damaging the underlying surface. It also produces the least amount of stress and deformation and is relatively easy to automate.