Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
Wrought nickel-based superalloys
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2016, Thermal Spray 2016: Proceedings from the International Thermal Spray Conference, 561-565, May 10–12, 2016,
Abstract
View Paper
PDF
Many ceramic materials are microstructurally stable at high temperatures, but exhibit poor mechanical properties under load. In this study, a Ni-base superalloy wire mesh is used as a reinforcement to strengthen a 6.15 mm thick layer of plasma-sprayed YSZ. The flexural performance of the ceramic matrix composite (CMC), as determined by a three-point bend test, exceeds that of monolithic YSZ in terms of peak load and displacement before fracture. Heat treatment of the CMC further increases the load at the onset of crack initiation due to enhanced bonding between the constituent materials.
Proceedings Papers
ITSC 2002, Thermal Spray 2002: Proceedings from the International Thermal Spray Conference, 258-261, March 4–6, 2002,
Abstract
View Paper
PDF
This work investigates the effect of processing parameters on the microstructure and composition of Ni-base alloys produced by laser forming, an additive technique also known as direct metal deposition. The parameters assessed in the study include powder flow rate, traverse speed, laser power, and spot size. In all experiments, a melt pool diameter of 0.3 mm was maintained. The results show that laser formed alloys are similar in structure to conventional wrought alloys with additional peaks formed as a result of the oxidation of active alloying elements. The complex compounds observed on the surface of the laser formed samples disappeared after polishing. Paper includes a German-language abstract.
Proceedings Papers
ITSC2000, Thermal Spray 2000: Proceedings from the International Thermal Spray Conference, 385-390, May 8–11, 2000,
Abstract
View Paper
PDF
Substrates protected by thermal spray coatings are usually found intact after use, making them viable candidates for recycling and reuse. The key is to remove the coating without damaging the component. This requires a process that minimizes the development of residual stresses and the associated distortion. The purpose of this work is to determine the optimal descaling technique for Ni-base sheets with a thermal barrier coating. Test specimens were produced following industry procedures. Thin sheets (<3 mm) of Ni-base superalloy were plasma sprayed with a NiCrAlY bond coat and a Y203-stabilized ZrO2 topcoat. The coating layers were then removed using different methods, including pickling, shot blasting, and water jet descaling, and the substrates were assessed based on X-ray diffraction and chord width measurements. The findings of the study show that water jetting removes all surface materials, particularly the bond coat, without damaging the underlying surface. It also produces the least amount of stress and deformation and is relatively easy to automate.