Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-4 of 4
Single-crystal superalloys
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 101-106, May 24–28, 2021,
Abstract
View Paper
PDF
In this paper, a diffusion kinetic model was applied to simulate the microstructure development in a MCrAlY-superalloy system at high temperatures. Both simulation and experimental results showed that γ+γ’ microstructure was obtained in the coatings due to Al depletion after oxidation. With the help of the modelling, the mechanism of the formation of the diffusion zones in the single crystal (SC) superalloy can be also analyzed. The results revealed that the inward diffusion of Al from coating affected the depth of secondary reaction zone (SRZ) with the precipitation of TCP phases while the depth of inter-diffusion zone (IDZ) was decided by the inward diffusion of Cr.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 746-749, May 26–29, 2019,
Abstract
View Paper
PDF
Sand blasting and high-velocity thermal spray processes can produce residual stresses in superalloy substrates that can significantly influence microstructure development. To investigate this effect, single-crystal superalloy substrates were sand blasted using different levels of force (zero, light, and heavy) and then coated with a MCrAlY layer by HVOF spraying. Cross-sectional analysis of an as-sprayed sample revealed a subsurface depletion zone with a composition rich in Mo nano precipitates. Cross-sectional examinations after vacuum heat treating and at various points during oxidation testing showed that elemental interdiffusion occurred between the coating and substrate and that sand blasting intensity has a major influence on the depth of the interdiffusion zones.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 151-157, May 26–29, 2019,
Abstract
View Paper
PDF
This study assesses the viability of using nitrogen instead of helium to cold spray NiCoCrAlTaY coatings onto single-crystal superalloy substrates. The process, though feasible, has a low deposition efficiency, leading to a high level of deformation that affects the microstructure of both the coating and substrate. SEM and TEM analysis revealed metallurgical and mechanical bonding at the interface and grain refinement in the coating. A fine grain structure that developed in the substrate after deposition was also observed possibly caused by dynamic recrystallization during the deposition process. Evidence of element segregation in the substrate, identifiable as zones with a deformed γ/γ’ structure, was found as well.
Proceedings Papers
ITSC 2004, Thermal Spray 2004: Proceedings from the International Thermal Spray Conference, 23-26, May 10–12, 2004,
Abstract
View Paper
PDF
The Ni-based single crystal superalloy has an excellent performance derive for high temperature fatigue strength. So, the expansion of application has been expected mainly in advanced gas turbine parts. However, it is known that the γ′ microstructure changes inside the material by plastic strain processing and heat-treatment. As a result, the fatigue strength was remarkably reduced. The new phenomenon was found that the B containing alloy coatings formed by thermal spraying restore high temperature fatigue strength of the weakened single crystal superalloy. We introduce the improvement effect of high temperature fatigue strength achieved by means of spraying the B containing alloy to CMSX-4 Ni base alloy substrate produced alterated layer.