Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 40
Iron powder
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 853-858, May 26–29, 2019,
Abstract
PDF
In this study, two sizes of iron and stainless steel powders were binarily mixed into four groups with different weight percent fractions and the various mixtures and single-component powders were cold sprayed onto aluminum substrates. The deposition efficiencies (DE) of the powder mixtures and single-component powders were measured and are compared. The results show that the four binary mixtures exhibit different DE characteristics as a function of stainless steel wt% and that the small size mixtures have higher DE relative to the single-component iron powder. The difference is explained by particle-particle interactions (tamping and retention) that occur upon impact and only in the small size mixtures. The study also finds that changing spray parameters, such as feed rate, stand-off distance, gun travel speed, and gas temperature and pressure, has no effect on particle-particle interactions.
Proceedings Papers
ITSC 2018, Thermal Spray 2018: Proceedings from the International Thermal Spray Conference, 256-261, May 7–10, 2018,
Abstract
PDF
In this study, 43 μm 316L stainless steel and 23 μm commercial purity Fe feedstocks were used. The following coatings were made by cold spray: single component 316L, Fe, and their binary composites with nominal compositions of 20 wt.% Fe (20Fe), 50 wt.% Fe (50Fe) and 80 wt.% Fe (80Fe). The coatings were characterized (microstructure, flattening ratio, composition) and the cold sprayability metrics (DE, porosity, coating cohesion strength) were analyzed. Results show that the single component 316L coating has a much better DE and coating cohesion strength, and a slightly lower porosity as compared with the Fe coating, whereas all the composite coatings have the similar cohesion strength. Moreover, the 20Fe coating features the highest porosity and the lowest DE; 50Fe coating features the lowest porosity; and the 80Fe coating features the highest DE. To characterize the feedstock mixture composition, in addition to the usual approach of weight or volume fraction, the ratio of the 316L and Fe particle numbers in a mixture (i.e. particle number fraction), was calculated. Using this metric, the effects of the feedstock mixing composition on the cold sprayability of bimodal size 316L/Fe powder mixtures can be better explained.
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 339-345, June 7–9, 2017,
Abstract
PDF
One important trend in thermal spraying is the application of novel Fe-based corrosion/wear protection coating systems. A typical field of application for such corrosion and abrasive wear protection coatings are rotary dryers of paper machines. At the moment, these cylinders are coated by wire arc spraying. A disadvantage of the wire arc sprayed coatings is their high thickness, which has a heat-insulation effect, and their high roughness. Therefore, an expensive post production grinding process is necessary in order to achieve the required surface quality. The goal is to develop a HVAF process that enables the production of thin, dense and near net shape corrosion/wear protection coating systems, which significantly reduce the post-production time and costs. In this study, the HVAF coating process and a novel Fe-based feedstock material are investigated. In the first step the Fe-based powder is analysed thermally using differential scanning calorimetry, to investigate the solidification and melting temperature of the feedstock material. Furthermore, the influence of the spraying distance and the powder feed rate on the microstructure and porosity of the resulting coatings is investigated using light microscopy. Furthermore, the deposition efficiency of HVAF coatings is analysed regarding their economic efficiency.
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 669-674, June 7–9, 2017,
Abstract
PDF
Three Fe-based powder alloys, Höganäs Fe SP529, Fe SP586 and 6AB, have been deposited by HVOF and HVAF spraying onto mild steel plates. The sprayed samples were first ground and then shot peened using glass shot in order to seal the surface interconnected pores and other surface imperfections. The samples as ground and ground/glass shot peened were tested by salt spray (fog) exposition for 238 h according to ASTM B117/ISO 9227. FeSP586, HVOF and HVAF sprayed and glass shot peening samples achieved surface sealing enough to pass the test with appearance rating RA = 9 according to ISO 10289. All other samples achieved moderate to excessive pitting and/or moderate to excessive staining types of corrosion defects.
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 1040-1044, June 7–9, 2017,
Abstract
PDF
In this work, single component 316L and Fe coatings, as well as mixed 316L/Fe coatings with a dual powder feeder to obtain various feedstock compositions, were deposited to measure the deposition efficiency (DE). Individual particle impact tests were performed on single component and composite coatings to understand the particle impact behaviors during deposition. Bond ratio (BR) were determined for the impact tests to correlate with the DE. Results show that the 316L powder has a better DE than Fe, whereas the DE of the mixed 316L/Fe powders increases with increasing feedstock Fe content. The BR results correspond well with the DE of single component powders and mixed powders. The BR of 316L impacts onto composite coatings decreases with increasing Fe content, while the BR of Fe impacts plateaus at a high value regardless of composite coating composition, which leads to the increase of overall mixture DE.
Proceedings Papers
ITSC 2015, Thermal Spray 2015: Proceedings from the International Thermal Spray Conference, 273-280, May 11–14, 2015,
Abstract
PDF
This study investigates the feasibility of forming amorphous iron-based coatings using the cold spray deposition process. Splat tests of cold-sprayed SAM1651 (Fe48Mo14Cr15Y2C15B6 at.%) particles impacting a mild steel substrate were performed using varying gas temperatures and particle diameters. Specimen inspection by scanning electron microscopy revealed splat morphologies that varied from well-adhered particles to substrate craters formed by rebounded particles. Particle flow was analyzed using a finite element model, and impact conditions were predicted using an experimentally validated analytical model, in empirically generating a temperature/velocity window of successful particle deposition as a framework for ongoing work on the formation of cold-sprayed SAM1651 coatings. The results indicate that the unique characteristics of the cold spray process offer a promising means for the formation of metallic glass coatings that successfully retain the amorphous structure, as well as the superior corrosion and wear resistant properties of the feedstock powder.
Proceedings Papers
Fe-Based Powder Alloys Deposited by HVOF and HVAF for Applications Exposed to Solid Particle Erosion
ITSC 2015, Thermal Spray 2015: Proceedings from the International Thermal Spray Conference, 1013-1019, May 11–14, 2015,
Abstract
PDF
HVOF and HVAF deposited coatings of three commercial Fe-based powder alloys have been ranked according to ASTM G76 solid particle erosion testing. The reference was electrolytic hard chrome (EHC) plating. The test results at 30 m/s abrasive particle velocity showed that 6AB powder alloy, when HVAF sprayed, Fe SP586 when both HVOF and HVAF sprayed meet the EHC plating reference erosion rate. 6AB HVOF sprayed and Fe SP529 both HVOF and HVAF sprayed powder alloys achieved two to three times higher erosion rate but were still at the same level of magnitude as the EHC plating reference.
Proceedings Papers
ITSC2012, Thermal Spray 2012: Proceedings from the International Thermal Spray Conference, 880-885, May 21–24, 2012,
Abstract
PDF
New developments in the field of thermal spraying systems (increased particle velocities, enhanced process stability) are leading to improved coating properties. At the same time innovations in the field of feedstock materials are supporting this trend. The combination of modern thermal spraying systems and new material concepts has led to a renaissance of Fe-based feedstocks. Using modern APS or HVOF systems, it is now possible to compete with classical materials for wear and corrosion applications like Ni basis (e.g. NiCrBSi) or metal matrix composites (MMC, e.g. WC/Co or Cr 3 C 2 /NiCr). The work described in this paper focuses on that combination and intends to give an analysis of the in-flight particle and spray jet properties achievable with two different modern thermal spraying systems (kerosene driven HVOF system K2, 3- cathodes APS system TriplexPro-200/-210) using Fe-based powders. The velocity fields are measured with the Laser Doppler Anemometry (LDA). Additionally, resulting coatings are analyzed metallographically with regard to their properties and a correlation with the particle in-flight properties is given. The experimental work is accompanied by computational fluid dynamics (CFD) simulations of spray jet and particle velocities, leading to a comprehensive analysis and characterization of the achievable particle properties with state-of-the-art HVOF and APS systems.
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 1061-1067, September 27–29, 2011,
Abstract
PDF
In this paper, an iron/aluminum composite coating was prepared by cold spraying using iron and aluminum powder mixture and then annealed to aim at forming iron aluminides by suitable annealing treatment. The annealed coating was characterized using X-ray diffraction (XRD) to determine the coating phases and scanning electron microscope (SEM) with an EDXA energy dispersive spectroscopy (EDS) to examine the coating microstructure evolution. Results showed that the Fe 2 Al 5 intermetallic layer along some regions of the aluminum-iron boundaries forms after annealing at a temperature of 450°C, where true metal to metal contact had occurred. The content of Fe 2 Al 5 phase increased with raising annealing temperature. It was observed that some cracks were developed in Fe 2 Al 5 layer after annealing treatment at a high temperature of 600°C.
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 158-162, May 3–5, 2010,
Abstract
PDF
Iron based materials are classified as being more health and environmentally friendly as well as cost-effective (material and machining costs) compared to typical materials used for wear protection applications (e.g. cermets). The advantage which is seen in using very fine powders (< 15 μm), is their potential to spray relatively thin, dense near-net-shape coatings with comparable smooth surfaces. This can lead to lower coating as well as machining costs. In this work fine Fe-based powders (-15+5 μm) have been used in order to produce wear resistant coatings for applications in the printing industry by means of air plasma spraying (APS). With regard to oxidation problems of such fine Fe-based materials a shroud for the air plasma spraying system has been developed and deployed. The resulting coatings have been analysed with respect to the microstructure, micro hardness, chemical and phase composition as well as surface roughness (as-sprayed). The economical aspects have also been considered.
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 968-973, May 4–7, 2009,
Abstract
PDF
This study investigates the effect of alloying additions on the oxidation behavior of iron (Fe) and nickel-chromium (NiCr) powders during atmosphere plasma spraying. The chemical composition and phases of oxides in the particles as well as in the coatings are assessed for different powder mixtures and spraying parameters. The results show that oxygen content can be significantly reduced by adding silicon (Si) and boron (B) to iron powders and Si, B, and carbon (C) to NiCr. The preferential oxidation and subsequent vaporization of Si, B, and C from the surface of the sprayed particles are believed to play a major role in controlling oxidation in the APS process.
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 187-192, May 4–7, 2009,
Abstract
PDF
In this study, suspension plasma spraying is used to produce cast iron coatings that benefit from a graphite structure. In order to increase the graphite content, different hydrocarbons in the form of liquid suspension (hexane and toluene) and gas precursor (methane) were injected into the plasma stream along with iron powder. Besides promoting the formation of a soot carbon structure, liquid hydrocarbon injection also prevents in-flight particle oxidation, which is a major concern when spraying metals. In addition, it has been observed that using a shroud during spraying significantly increases the amount of soot carbon in cast iron coatings, which can be transformed into graphite by post annealing.
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 691-694, May 4–7, 2009,
Abstract
PDF
This study evaluates Fe-Si intermetallic powders as an alternative to powders currently used to coat furnace walls in pulverized coal fired boilers. The developed powder mainly consists of Fe 2 Si, which has a relatively low melting point among iron silicides. The powders were deposited on CrMo steel substrates by HVOF and atmospheric plasma spraying and the resulting coatings were subjected to corrosion and erosion testing. Under conditions simulating the operating environment in a low NO X boiler, the HVOF sprayed Fe-Si coatings exhibited sulfidation resistance nearly equal to that of Cr-Ni layers, and in high-temperature erosion tests, the APS intermetallic coatings with boron additions were found to be more erosion resistant than conventional Cr 3 C 2 -NiCr coatings.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 1213-1219, June 2–4, 2008,
Abstract
PDF
FeAl Intermetallic compounds have excellent wear resistance and high temperature oxidation resistances. The low temperature brittleness makes intermetallic compound materials more suitable to be applied in the form of coating to protect materials from high temperature oxidation and wear. In the present study, a iron/aluminum composite coating was produced by cold spraying of iron and aluminum powder mixtures and then was annealed at different temperatures to aim at forming an iron aluminide intermetallic based coating. The deposition behavior of iron and aluminum powder mixtures and microstructural characteristics of the as-sprayed deposit were examined by scanning electron microscopy (SEM). The kinetics of the phase transformation of the as-sprayed iron/aluminum composite deposit to iron aluminide was characterized by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The results showed that after heat treatment at a temperature of 600°C, intermediate phase Al 5 Fe 2 coexisted in the deposit with remaining Fe and Al. With increasing heat treatment temperature to 900°C, the deposits consisted of mainly FeAl phase and a trace of remaining Fe phase.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 1516-1520, June 2–4, 2008,
Abstract
PDF
Since many years, aluminum alloys are established as lightweight construction materials. To reach a partial wear protection for aluminum components in conjunction with seal faces, inlays, made of wear resistant materials, are commonly used. Problems concerning this approach are the necessary space and the endurance strength of the inlay - part joint. New process equipment offers the potential to control the energy input into the substrate and so the formation of brittle intermetallic phases in the aluminum-steel interface as well as the thermal stresses. The usage of new nano crystalline solidifying wear resistant iron-based feedstock materials with advantageous physical and mechanical properties enables further applications beside the wear protection of surfaces, for example as metallic heat insulation layer with a low heat conductivity, close to the values of ceramics.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 13-17, June 2–4, 2008,
Abstract
PDF
Cast iron coatings containing solid lubricant of graphite are an attractive candidate for wear resistant applications of an aluminum alloy substrate. It is difficult to generate a graphite structure in coatings sprayed with as-atomized cast iron powder which contains a few graphite owing to their high solidification rate. Although a graphite structure is remained in coatings sprayed with fully annealed cast iron powder, graphite carbon becomes lower than that in the annealed powder because of the in-flight oxidation and dissolution of graphite into molten iron. The present study is focused on an increase in graphite carbon through flying droplet diagnostic at a certain spray distance, that is, in-situ measurements of droplet temperature and velocity. Water-atomized cast iron powder which was annealed at 900°C for 3.6ks, was supplied as a spray material. The fully annealed powder was plasma-sprayed onto an aluminum alloy substrate, as well as carrying out flying droplet diagnostic. The amount of graphite carbon can be estimated by flying droplet temperature and velocity, which are controlled by spray parameters such as plasma gas flow rate and plasma current. It is confirmed that droplet velocity exhibits stronger influence on graphite carbon compared with droplet temperature. High velocity causes an increase in graphite carbon, so that it is possible to fabricate graphite-graded cast iron coatings with high amount at the surface and low at the interface.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 317-320, June 2–4, 2008,
Abstract
PDF
The thermal spray application of inert gas atomised iron based powders for combined wear and corrosion protection prospectively offers important economical advantages compared to the well-established cermet coatings due to their lower price. Recent studies revealed basic knowledge about the thermal spray processing of these materials. For protecting the substrate from corrosive media, coatings have to be dense and impermeable to fluids. Especially poor bonding, occurring between partially melted or unmelted spray particles, leads to open porosity. Hence a certain degree of melting of particles is required. The GTV K2 spray gun allows the use of different nozzles to vary process temperature and velocity in a wide range. This paper shows the influence of applicated nozzles and process conditions on coating characteristics. Powder and coating characterisation is carried out by means of optical microscopy, digital image analysis, SEM and XRD. Additionally, some results regarding microhardness and wear behaviour are given.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 321-325, June 2–4, 2008,
Abstract
PDF
New requirements for modern component part surfaces increasingly demand improvements over friction coefficients in the sense of a reduction of friction losses. A substantial control factor in terms of lower friction and wear is the use of coating solutions such as thermal spray coatings. In practice, the application of coatings by means of thermal spray is more and more often used for influencing tribological matching. However, surface microstructuring might represent an additional, further reaching solution for wear and friction behaviour improvements of tribologically high-stressed surfaces. The aim of the reported research project is the development of atmospheric plasma sprayed (APS) coatings with an inherent porous microstructure and surfaces with stochastically distributed nap volumes (from cut pores) regarding lubricant retention and -distribution in running surfaces of friction-type bearings. Subject of these investigations are in particular thermomechanically highly loaded hydrodynamic tribological matchings, amongst others by the example of a piston ring/cylinder system in engine blocks. The use of special fractioned Fe-base powders enables the production of a new type of coatings with an inherent porous microstructure, which offer advantages due to constantly regenerating their surface topology under wear, and maintain employment in tribological systems with increased loads due to optimized lubricant retention and distribution. Hence, this project has an emphasis on the design of optimal nap sizes in coating surface structure in dependence on the hydrodynamical load, as well as on investigations for the controllability of nap volumes by the design of suitable processes.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 568-572, June 2–4, 2008,
Abstract
PDF
HVOF-sprayed carbide based coatings such as WC/Co or Cr 3 C 2 /NiCr are industrially well established for wear and corrosion protection applications. Due to their high carbide content of typically 75 wt.-% and more, they are providing a very high hardness and excellent wear resistance. Unfortunately costs for matrix materials like Ni or Co underlie strong fluctuations and are significant higher compared to iron. Therefore an alternative concept to the conventional carbides is based on TiC-strengthened low cost Fe-base materials, which are already in use for sintering processes. Depending on the carbon content the Fe-base material can additionally offer a temperable matrix for enhanced wear behaviour. Within this study the sprayability of TiC-strengthened Fe-powders with a gaseous and a liquid fuel driven HVOF-system has been investigated. The resulting coatings have been analysed with respect to microstructure, hardness and phase composition and compared to galvanic hard chrome, HVOF-sprayed and remelted NiCrBSi and HVOF-sprayed Cr 3 C 2 /NiCr (80/20) coatings as well as sintered Fe/TiC reference materials. Furthermore the Fe/TiC coatings have been heat treated to proof the retained temperability of the Fe-matrix after thermal spray processing. For determination of wear properties tribometer tests have been conducted. Currently the corrosion resistance of the sprayed Fe/TiC coatings is investigated as well the wear behaviour in a practical hydraulic test bench.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 843-848, May 14–16, 2007,
Abstract
PDF
Graphitization behavior of water-atomized cast iron powder at each thermal spraying step, such as droplet flight, droplet impingement and splat layering, was successively examined. Both as-atomized cast iron powder and coatings sprayed with the powder contain no graphite structure owing to their rapid solidification. A short period of pre-annealing at 1173 K allows the formation of graphite structure in the cast iron powder, in which there exist precipitated graphite of 3.58 mass%. The microstructure observation exhibits that pre-existed pores in the as-atomized powder strongly affect the precipitating sites of graphite, that is, mainly inside the individual powder instead of the surface. However, marked reduction in graphite structure occurs to coatings sprayed with the pre-annealed powder because of in-flight burning and dissolution into molten iron. In-process post-annealing at 773 K for 60 s reveals the formation of graphite structure resulted from the decomposition of iron based metastable carbide in splats and coatings sprayed with the as-atomized powder. Chemical analysis demonstrates that graphitization level of post-annealed cast iron coatings is higher than that of coatings sprayed with the pre-annealed powder. Precipitated intersplat graphite structure of 1.68 mass% appears in cast iron coatings when introducing methane as a powder feeding carrier gas which is liable to decompose in plasma flame. The resultant coatings with graphite structure embedded in hard matrix are anticipated to offer superior wear resistance in comparison to centrifugally cast iron containing flaky graphite of 1.76 mass%.