Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-9 of 9
Steam turbines
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 159-165, April 29–May 1, 2024,
Abstract
View Paper
PDF
The method of simulating the wear performance under working conditions using a high-temperature ultra-high-speed wear testing machine was adopted to study the effect of feed rate variation on the wear behavior and scraping performance of the AlSi/hBN sealing coating and TC4 simulated blades. The macro and micro morphology of the coating and blades were analyzed by stereomicroscope and scanning electron microscope (SEM). The phase composition of the coating was analyzed by energy dispersive spectrometer (EDS) and X-ray diffraction. The results showed that, under the conditions of temperature of 450°C, line velocity of 300m/s, and feed depth of 500μm, the change in feed rate significantly affected the macro and micro morphology and wear mechanism of the AlSi/hBN sealing coating-TC4 simulated blades. At low feed rates, severe wear occurred, mainly manifested as grooving, adhesion transfer, and overheating mechanisms. At medium to high feed rates, good machinability was observed, mainly manifested as cutting and transfer of coating material to the blades.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 704-711, April 29–May 1, 2024,
Abstract
View Paper
PDF
Thermally sprayed abradable coatings are essential for improving the performance of gas turbine engines. They act as a protective barrier between the stationary casing and rotating blades. Though a lot of research has been done on abradable coatings, little attention has been paid to comprehending wear mechanisms in the abradable-blade tip interaction. The goal of this project is to create a cost-effective test rig that can evaluate different thermally sprayed abradable coatings and understand how they interact with titanium blade tips under application-relevant conditions. Blade tip velocity, incursion rates, incursion depths, reaction forces, and interfacial temperatures are some of the inputs and outputs that the testing rig can provide. Aiming to validate the rig, this study examined the wear behavior of aluminum, thermally sprayed polyester, and AlSi-40Polyester abradable coating. The reaction forces for aluminum and polyester were overall higher when compared to AlSi-40Polyester. However, thermally sprayed polyester showed the highest interfacial temperatures of all materials tested. The difference in the reaction forces and interfacial temperature correlates well with the different wear mechanisms and thermal conductivities. Overall, the equipment showed to be a promising pre-screening methodology to evaluate and develop novel thermal spray abradable coatings.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 307-314, May 24–28, 2021,
Abstract
View Paper
PDF
As steam power plants continue to move towards higher operating temperatures in order to improve efficiency, materials exposed to the working fluid are subjected to accelerated degradations in the forms of surface oxidation and reduced mechanical properties. In this study, the oxidation behavior of two cobalt base alloys, CoCrMoSi (T14) and CoCrNiMoSi (T19), was evaluated in superheated steam (SHS, 0.1MPa) at 800 °C for up to 500 hours. After the exposure, both T14 and T19 alloys experienced weight gain caused by oxidation. Visual observation and SEM surface analysis revealed that T19 had greater extent of surface oxide spallation than that seen on T14. From the cross-sectional evaluation, however, a thin, adherent oxide layer was found to have formed on T19. T14 in fact had suffered from excessive internal oxidation and the surface oxide was uneven. Based on the results obtained so far, it is believed that the finer Laves phase combined with greater amount of Cr in alloy T19 have enabled the formation of a protective oxide layer and thus reduced the extent of internal oxidation. Due to the extensive oxidation ingress along the large Laves phase, it is concluded that T14 is not suitable for applications in SHS at 800 °C.
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 104-107, June 7–9, 2017,
Abstract
View Paper
PDF
The degradation mechanisms of machine parts are well-known facts, usually resulting in replacement of components. However, in some cases, for instance, parts for large ship engines, repair will often seem more attractive. Time-wise, the vessel’s down-time will be reduced and the investment will be lower. This paper describes repair work performed on valve stems from a 52-year-old ship engine. Due to this long time in operation, the stems were damaged by wear and were no longer functional. The requirements for the stems were scarcely documented stating only a few specific requirements; therefore a short study of the possibilities concerning rebuild material and application method was initiated. This paper illuminates the manufacturing process used; twin wire arc spraying with Monel as the rebuild material. Monel is chosen to meet the requirements for hardness and the subsequent high precision machining. In addition, the mechanical and metallurgical properties of the rebuild coating are examined in regard to adhesion, microstructure and hardness to interpret and support the functionality.
Proceedings Papers
ITSC2012, Thermal Spray 2012: Proceedings from the International Thermal Spray Conference, 143-148, May 21–24, 2012,
Abstract
View Paper
PDF
Compressor abradables coming into operational contact with bare, un-tipped titanium alloy rotor blades over a wide range of incursion conditions require excellent cuttability in order to avoid blade tip damage by wear and over-heating. This is more easily achieved for low temperature systems that can make use of low shear strength aluminum matrices than for compressor abradables operating closer to the maximum allowable temperature of advanced titanium alloy blade materials. In this case the rotor path linings will have to incorporate higher temperature resistant Ni and Co alloy matrices. To that end the availability of abradable coatings capable of operating at up to 550°C while showing little thermal ageing effects and excellent abradability over their entire service life can influence the compressor blade material selection and therefore compressor weight and performance characteristics. This paper provides an overview of titanium blade friendly compressor abradable concepts. Particular emphasis will be placed on the abradability of in-service and next-generation coatings designed for use up to the temperature capability of Ti blade rotor materials and beyond. Candidate coatings are also screened for other performance criteria such as thermal cyclic resistance and ageing behaviour.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 330-335, June 2–4, 2008,
Abstract
View Paper
PDF
Abradable seals have been used in jet engines since the late 1960's. Today they are seeing applications in low pressure and high pressure sections of compressors as well as the high pressure turbine module of jet engines. Clearance control systems using abradable coatings are also gaining ever more attention in industrial and steam turbine applications. Thermal spraying is a relatively simple and cost effective means to apply abradable seals. Abradable coatings work by minimizing gaps between rotating and stationary components by allowing the rotating parts to cut into the stationary ones. Typically plasma and combustion spray processes are used for applying abradable coatings. The types of coatings employed in the HP turbine are zirconia based abradable material systems with polymer and, in some cases, solid lubricant additions such as hexagonal boron nitride. The coatings are designed to work at service temperatures of up to 1200°C. Types of matrix materials used in the low and high pressure sections of the compressor are aluminum-silicon, nickel and MCrAlY based systems. These compressor type systems typically also contain fugitive phases of polymer and/or solid lubricants such as hexagonal boron nitride or graphite. Operating temperature, depending on the material of choice, can be up to 750°C. Regardless of the specific application, fugitive phases and porosity are needed for abradable coatings. Polymers are used to create and control porosity in plasma sprayed coatings, a critical design requirement in adjusting abradability and erosion properties of thermal spray coatings. Combustion spray coatings generate porosity through the lower deposition velocities and temperatures compared to plasma and typically do not need polymer phases. Solid lubricants are added to help weaken the structure of thermal spray coatings and reduce frictional heating and material transfer to the blade.
Proceedings Papers
ITSC 2002, Thermal Spray 2002: Proceedings from the International Thermal Spray Conference, 306-311, March 4–6, 2002,
Abstract
View Paper
PDF
Thermally sprayed hardmetal coatings are often used to protect valves in steam turbines against wear. Normally the valve spindles are made of CrMo steel and their bearings are made of Stellite, a cobalt-base alloy. In this investigation, a block-on-ring wear test is used with rings and blocks made of the same materials as the spindles and bearings. The rings were coated with Cr3C2-NiCr by HVOF spraying. Wear tests showed increasing weight loss up to 400°C and a sharp decline at 600°C due to a thin surface oxide layer that begins growing at 450°C. The coatings are characterized based on SEM, EDX, and hardness measurements. Paper text in German.
Proceedings Papers
ITSC1998, Thermal Spray 1998: Proceedings from the International Thermal Spray Conference, 993-998, May 25–29, 1998,
Abstract
View Paper
PDF
Two different coatings were studied in this work : vacuum plasma-sprayed NiCoCrAlYTa and electrodeposited NiCoCrAlYTa. These coatings were deposited on AM3 single crystal alloy. The tensile and creep properties of coated single crystal test specimens were investigated. Ductile-brittle transition temperatures (DBBTs) were determined from tensile tests. Creep tests were performed on cylindrical specimens and on thin flat specimens. All the coatings were examined before and after testing. The two tested coatings induce a ductile/brittle transition. Strain rate has a great influence on the transition temperature. The comparison between the two processes of deposition illustrates the strong influence of coating microstructure. A marked decrease in creep properties was observed for thin single crystal specimens but contrary to cylindrical specimens, the coating has a quite positive influence, so that the creep life of coated thin specimens is increased.
Proceedings Papers
ITSC1996, Thermal Spray 1996: Proceedings from the National Thermal Spray Conference, 159-167, October 7–11, 1996,
Abstract
View Paper
PDF
Escalating operation and maintenance costs and increasing intervals between outages place a heavy burden upon electric power producing components. To meet this demand, component life cycles must be extended with either material upgrades or utilization of surface protection products. This paper will discuss the experiences of the Tennessee Valley Authority in the application of thermal spray coatings and try to relate some of these experiences to component performance in fossil power plants' steam turbine components. The development of high velocity thermal spray processes has given coatings an advantage over the use of high priced material upgrades. Chromium carbide coatings have proven the most economical of the surface protection products for use in high temperature applications where solid particle erosion occurs. These coatings have received extensive laboratory testing where limited field results are now just becoming available. Various thermal spray coatings will be described. The development of newer coatings and laboratory test data will be discussed. Optical microscopy and wear studies will be included in the discussion. Where appropriate and available, comparisons to standard plasma sprayed coatings and uncoated substrata are made.