Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-10 of 10
Diesel engines
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2012, Thermal Spray 2012: Proceedings from the International Thermal Spray Conference, 149-153, May 21–24, 2012,
Abstract
View Paper
PDF
Thermal barrier coatings (TBCs) are widely used to insulate the combustion chamber of internal combustion engines to improve their performance efficiency, reduce pollution, and protect the metals from high temperature oxidation. In this work, a TBC coating composition of 80% zirconium oxide and 20% gadolinium oxide (GdPSZ) was prepared in the laboratory and plasma spray coated on the combustion chamber of single-cylinder diesel engines. An engine performance test was conducted for both the baseline (uncoated) engines and the coated engines. The coatings in the combustion chamber of the engines were found to be well adhered after 300 hours of rigorous testing. A significant reduction in smoke density was observed, especially at higher loads, for the coated engines. However, the coated engines exhibited a 2-6% reduction in volumetric efficiency and an increase in brake-specific fuel consumption compared to the uncoated engines. The results for other performance parameters are also discussed.
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 327-330, May 3–5, 2010,
Abstract
View Paper
PDF
The blast erosion-resistance properties of HVOF thermal spray Cr 3 C 2 type coating system and aluminized material were examined to improve erosion-resistance of turbine housings of compressors used in turbochargers for marine diesel engines. As a result, the erosion life of aluminized material is as same as that of the substrate, on the other hand the erosion life of thermal sprayed coating is ten times of that of the substrate. Therefore, erosion life of turbine housing can be extended by the surface treatment procedure. This technology is applicable to actual products.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 1-5, June 2–4, 2008,
Abstract
View Paper
PDF
Widely studied in the 1980s, the insulation of pistons in engines aimed at reducing the heat losses and thus increasing the indicated efficiency. However, those studies stopped in the beginning of the 1990s due to NOx emission legislation, and also due to acceptable oil prices. Nowadays, with the improvement of exhaust after treatment systems (Diesel Particulate Filter, Selective Catalytic Reduction, and Diesel Oxidation Catalyst) and engine technologies (Exhaust Gas Recirculation), there are more trade-offs for NOx reduction. Besides, the fast rise of the oil prices tends to come back to insulation technologies in order to save fuel. This paper deals with the realization of a 1 mm thick plasma sprayed thermal barrier coating with a graded transition between the topcoat and the bondcoat on top of a serial piston for heavy-duty truck engines (11L displacement – Exhaust Gas recirculation – Single Stage Turbocharger with Variable Geometry Turbine and intercooler). The effects of the insulated pistons on the engine performance are also discussed.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 18-23, June 2–4, 2008,
Abstract
View Paper
PDF
The future demands of diesel engines require new options for low-friction and wear-resistant materials in order to increase efficiency and achieve environmentally sound solutions. Efforts are made to improve the performance and reduce the weight of engine blocks by coating the Aluminium cylinder bores with thermal-spray processes. Thus beside other means today nanocrystalline coatings are currently discussed, which should allow for the desired combination of structural, productional, and topographical properties. Beside sufficient tribological properties it is important that the composite (base material and coating) allows for an elongated endurance under cyclic mechanical and thermal stresses. In this work a four-point-bending test was used to examine deleterious failure mechanisms during fatigue such as spalling of the coating or delamination from the substrate. Therefore various thermally sprayed coatings were bent in tension and compression. The results were analysed in relation to the coating microstructure.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 1099-1104, May 14–16, 2007,
Abstract
View Paper
PDF
Hot corrosion tests have been conducted on Ni- and Cr-based laser coatings, a high-velocity oxy-fuel (HVOF) sprayed coating and various wrought alloys covered with a synthetic salt of Na 2 SO 4 -V 2 O 5 and exposed at 650°C for 1000 h in air. Coating microstructures and reaction product layers were analyzed with scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The hot corrosion resistance of tested specimen was evaluated by measuring its mean thickness loss. Generally, wrought alloys, HVOF coating and Cr-based laser coatings suffered from selective corrosion beneath salt film, that is, distinct Cr-depleted layer was formed at alloy/salt interface. Cr-based laser coatings exhibited extended solid solubility and they transformed towards equilibrium condition. Cr-rich phases enriched further with Cr and they were prone to corrosion. Low diluted laser coatings and HVOF coating were more resistant to hot corrosion than commonly used industrial standard alloy, Nimonic 80A. Ni-based laser coating exhibited resistance equivalent to Cr-based coatings and superior to corresponding wrought alloy.
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 915-919, May 2–4, 2005,
Abstract
View Paper
PDF
In this work, metal-based thermal barrier coatings (MBTBCs) for use in low heat rejection diesel engines have been produced, using high frequency induction plasma spraying (IPS) of iron-based nanostructured alloy powders. Important advances have been made over recent years to the development of ceramic-based thermal barrier coatings (TBCs) for diesel engines, but they are not yet applied in mass production situations. Besides the important economic considerations, the reliability of ceramic TBCs is also an issue, being associated with the difficulty of predicting their “in-service” lifetime. Through engineering of the nano/amorphous structure of MBTBCs, their thermal conductivity can be made as low as those of ceramic-based TBCs, with reduced mean free paths of the electrons/phonons scattering. In this work, nano/amorphous structured coatings were deposited by IPS using the following spray parameters: spraying distance (200mm), plasma gas composition (Ar/N 2 -85/15, by volume %), IPS torch power (25kW), and powder feed-rate (16g/min.). The structure and properties of the deposited layers were characterized through SEM (Scanning Electron Microscopy) observations. The thermal diffusivity (α) properties of the MBTBCs were measured using a laser flash method. Density (ρ) and specific heat (Cρ) of the MBTBCs were also measured, and their thermal conductivity (k) calculated (k =αρCp). The thermal conductivity of MBTBCs, with 7.5% total porosity, was found to be 1.22 W/m/K. The heat treatment study showed that phase transformation started at 650oC, and grain size growth from nano- to micron- scales occurred at around 1000°C under static exposure conditions. Thermal expansion coefficient (TEC) of MBTBCs was 15E-6 /K, which is close to the TEC of cast iron and thus, closer to the TEC values of aluminium alloys than are conventional TBCs. Fracture toughness of MBTBCs has also been assessed by use of Vickers hardness tests, with a 100 g load for 15 s, and the results show that there are no measurable crack developments around “indented” areas on all samples of MBTBCs tested.
Proceedings Papers
ITSC 2004, Thermal Spray 2004: Proceedings from the International Thermal Spray Conference, 290-293, May 10–12, 2004,
Abstract
View Paper
PDF
Aluminum alloy has been gradually utilized in cylinder block instead of ferrous casting material for weight reduction in automobile industry these days. In order to acquire more weight reduction, a new liner-less technology - without cast iron liner used - is putting into practice in the fields of aluminum cylinder block and the target is for diesel engine. However, diesel fuel's impurity "sulfur" element and corrosive attack risk, such as sulfuric acid generated to the surface of liner is higher than gasoline fuel. Because of such disadvantage, wear and corrosion resistances applied to the inner cylinder-bore are required in order to achieve this liner-less aluminum cylinder block. This research is intended to accomplish both wear and corrosion performances using plasma thermal spray technology and to verify the feasibility of application to actual engine bore. A newly-developed ferrous powder (Fe-C-Ni-Cr-Cu-V-B alloy) revealed extremely excellent corrosion and wear resistances, compared with currently used bulk casting materials such as Fe-C-Si-B alloy and Fe-C-Si-Mo-B alloy for cylinder liner. For the last time, the new ferrous alloy powder was applied to actual engine bore by using Rota-Plasma spray coating. The experimental results with engine bore presented potential equivalent to current engine bore.
Proceedings Papers
ITSC 2003, Thermal Spray 2003: Proceedings from the International Thermal Spray Conference, 129-138, May 5–8, 2003,
Abstract
View Paper
PDF
Diesel engine development is continuously progressing: light vehicle diesel (LVD) engines are gaining in popularity in Europe and therefore we see a steady improvement in power performance and fuel consumption going along with increased loading of the power-cylinder components. Moreover, heavy-duty (HD) engines for trucks are facing stricter environmental legislation leading amongst other technologies to the introduction of exhaust gas recirculation (EGR). Whatever reduced emission technology will be applied, they all will significantly influence the engine tribology. This paper is dedicated to describing modern piston ring coating technologies to face the future diesel engine demands. The paper mainly focuses onto modern piston ring coating technology such as hard particle reinforced chrome plating, HVOF spraying and PVD. In particular, it will be discussed how thermal spray coatings need to be designed to find their position among established or future coating technologies of the competition.
Proceedings Papers
ITSC 2001, Thermal Spray 2001: Proceedings from the International Thermal Spray Conference, 157-165, May 28–30, 2001,
Abstract
View Paper
PDF
Zirconia based, 8Y 2 O 3 -ZrO 2 and 22MgO-ZrO 2 thick thermal barrier coatings (1000µm), were studied with different sealing methods for diesel engine applications. Aim of the sealing procedure was to improve hot corrosion resistance and mechanical properties of porous TBC coatings. The surface of the TTBCs was sealed with two different methods, phosphate based sealing treatment and laser glazing. The thickness of the densified top layer in all cases was 50-400µm. XRD analysis showed some minor phase changes and reaction products caused by phosphate based sealing treatment and some crystal orientation changes and phase changes in laser-glazed coatings. The porosity of the outer layer of the sealed coating decreased in all cases, which led to increased microhardness values. The hot corrosion resistance of TTBCs against 60Na 2 SO 4 - 40V 2 O 5 deposit was determined in isothermal exposure at 650°C for 200 h. Corrosion products and phase changes were studied with XRD after the test. Short-term engine test was performed for the reference coatings (8Y 2 O 3 - ZrO 2 and 22MgO-ZrO 2 ) and for the phophate sealed coatings. Engine tests were performed at the maximum load of the engine and it was aimed to evaluate the thermal cycling resistance of the sealed coatings. All the coatings passed the engine test, but some vertical cracks were detected in the phosphate sealed coatings.
Proceedings Papers
ITSC1996, Thermal Spray 1996: Proceedings from the National Thermal Spray Conference, 135-140, October 7–11, 1996,
Abstract
View Paper
PDF
The experimental results of developing tribological surface coatings for high temperature application are presented. The primary focus of this work was in the area of high output advanced, low heat rejection (LHR) diesel engines, where high temperature lubrication between the piston ring and the cylinder liner wall surface is essential. The target temperature focused upon in our research is an operating top ring reversal temperature of approximately 1000° F. The technology developed typically involves treating a porous thermal spray coating with chemical binders improving coating strength and integrity and eliminating open porosity to form an almost monolithic appearing coating. The effectiveness of the densification through the coating thickness was studied. It has been shown that densification process improves mechanical properties and dramatically extends coating wear resistance. Good results were obtained using densified plasma spray Iron oxide (hematite) for a cylinder liner coating versus plasma sprayed Tribaloy T 800 for piston ring. Single Cylinder LHR engine test successfully demonstrated the feasibility of this tribological pair for the possible future applications.