Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 469
Thermal barrier coatings
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 75-82, April 29–May 1, 2024,
Abstract
View Paper
PDF
This work focuses on the processing and deposit by suspension plasma spraying (SPS) of ZrO 2 -based ceramic materials for Thermal Barrier Coatings (TBC's) applications. The system of interest is ZrO 2 -16mol%Y 2 O 3 -16mol%Ta 2 O 5 (16YTZ). This ceramic has been reported to keep a non-transformable tetragonal phase (t'-phase), suitable to overcome the thermodynamic limits of the mostly used conventional 7-8wt.% yttria stabilized zirconia (YSZ). The research consists into evaluate the t'-phase stability and performance of the 16YTZ SPS coating. Synthesis of 16YTZ and, the evolution of the resulting microstructure in the dense ceramic and in the coating are a central part of the study. Sintering behavior in dense ceramics prepared from both precursor derived and milled powders is evaluated. Microstructural characterization by XRD, SEM and RAMAN spectroscopy of the as-deposited ceramic coating is presented and discussed.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 139-151, April 29–May 1, 2024,
Abstract
View Paper
PDF
In this study, the in-situ technique was used to observe crack formation and growth in multilayer suspension plasma spray (SPS) thermal barrier coatings (TBCs). Utilizing synchronized three-point bending (3PB) and scanning electron microscopy (SEM), coupled with digital image correlation (DIC), we provide real-time insights into strain field dynamics around cracking zones. Bending-driven failure was induced in both single and composite-layer SPS coatings to investigate the crack behavior in these columnar-structured multilayer TBCs. The real-time observations showed that columnar gaps can facilitate crack initiation and propagation from the coatings' free surface. The composite-layer SPS coating exhibits lower susceptibility to vertical cracking than the single-layer SPS coating, possibly due to the presence of a gadolinium zirconate (GZ) dense layer at the coating's free surface that enhances the bonding strength within the coating's columnar structure. The splat structure of the bond coat (BC) layer contributes to the crack path deflection, thereby potentially improving the SPS coating' fracture toughness by dissipating the energy required for crack propagation. Moreover, it was revealed that grit particles at the BC/substrate interface seem to promote crack branching near the interface, localized coating delamination, and serve as nucleation sites for crack development. Hence, optimizing the grit-blasting process of the substrate before BC layer deposition is crucial for minimizing the possibility of crack formation under operational conditions, contributing to enhanced durability and prolonged lifespan. This study underscores the critical role of in-situ observation in unravelling the complex failure mechanisms of multi-layered coatings, paving the way for the design of advanced coatings with enhanced structural complexity and improved performance for more extreme environments.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 176-184, April 29–May 1, 2024,
Abstract
View Paper
PDF
The ingestion of siliceous particulate debris into the gas turbine engines during operation caused the deposition of so-called CMAS (calcium-magnesium-alumino-silicate) on the hotter thermal barrier coating (TBC) surfaces. The penetration of these particles into the TBC at temperatures above 1200°C caused the loss of strain tolerance and premature failure of the TBCs. To mimic real-world conditions, a commercially available CMAS precursor dust powder was sprayed onto 8YSZ coatings using an atmospheric plasma spraying process. The substrate temperature was maintained at an average of 1100°C and 525°C during spraying. The effect of the spraying parameters on the deposition, microstructure, and composition of the CMAS coatings was investigated. In addition, to understand the CMAS build-up on the high-temperature surfaces, the CMAS splat formation behavior was also analyzed on the polished samples at temperatures ~1100°C. SEM/EDS analyzes were performed to identify and quantify the elements of the CMAS deposits. It was found that the surface temperature, deposition time, and different nozzles could play a significant role in having different phases of CMAS deposits.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 204-212, April 29–May 1, 2024,
Abstract
View Paper
PDF
Previous own works revealed that novel partially amorphous Fe-based alloys have a combination of proper-ties that are beneficial for the application in liquid hydrogen (LH2) tanks, viz low thermal diffusivity, little porosity, and good adhesion. The influence of cryogenic temperatures or hydrogen on coating tensile strength, on the other hand, has not been investigated yet for this material. However, this is crucial for the long-term durability of the coatings under hydrogen and other alternative fuels. Thus, in this work, tubular coating tensile (TCT) tests were performed at room temperature and cryogenic temperatures. In addition, hydrogen charging was carried out to identify a possible regime that is sufficient for TCT tests under the influence of hydrogen. Subsequently, the fracture surfaces were evaluated analytically, optically and profilometrically. Under cryogenic conditions, a significant increase in tensile strength and a finer structure of the fracture surfaces was observed.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 228-232, April 29–May 1, 2024,
Abstract
View Paper
PDF
One of the promising thermal barrier coatings (TBC) options for use above 1250 °C has been La 2 Ce 2 O 7 (LC). This work explored the role of dual layered ceramic coatings in the top layer of the TBC system that has been prepared using atmospheric plasma spraying (APS). Above the NiCrAlY bond coat, 8 mol.% yttria stabilized zirconia (8YSZ) coating has been deposited with optimized APS parameters. Over the top layer (8YSZ), another layer that comprises composite with LC and 8 wt.% of 8YSZ (spray dried) has been deposited. Investigations into the hot-corrosion behavior of 8YSZ-LC based TBC subjected to Na 2 SO 4 +V 2 O 5 salt at 950 °C for 4 hours. A porous layer made mostly of LaVO 4 , CeO 2 , CeO 1.66 and YVO 4 was developed on the LC+8wt.% YSZ layer after being subjected to a hot corrosion test in Na 2 SO 4 +V 2 O 5 salt. Dissociation of LC and 8YSZ leads to the formation of new phases, such as CeO 1.66 , CeO 2 , LaVO 4 and YVO 4 as the corrosion by-products in the extreme environment. The findings indicated that delamination has occurred due to the phase transformation, cavities and cracks in the 8YSZ-LC based TBCs. The molten salt's hot corrosion mechanisms of the 8YSZ-LC based TBC are discussed in detail. Further, the potential use of 8YSZ-LC based dual coatings and scope for the future work have been derived from the current study.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 266-277, April 29–May 1, 2024,
Abstract
View Paper
PDF
Hybrid plasma spraying combines deposition of coatings from coarse powders and liquids (suspensions or solutions) so that the benefits of both routes may be combined. In this study, failure evolution of early-stage thermal barrier coatings (TBCs) with hybrid YSZ-YSZ and YSZ-Al 2 O 3 top-coats deposited by hybrid water/argon-stabilized plasma torch was evaluated. In-situ bending experiment was carried out in SEM to assess potential influence of the secondary miniature phase addition on the coating failure during mechanical loading. Adapted high-resolution open-source strain-mapping code GCPU_Optical_flow was used to track evolution of the local coating failure. For the tested coatings, addition of miniature phase did not weaken the hybrid coating microstructure as the crack propagation was practically insensitive to the presence of the secondary phase and dissimilar splat boundaries. Main micromechanisms of the top-coat failure were thus splats cracking, loss of cohesion (splat debonding), and mutual splat sliding.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 298-309, April 29–May 1, 2024,
Abstract
View Paper
PDF
Suspension plasma spraying (SPS) is increasingly studied to produce finely structured coatings with dense and columnar microstructures for promising thermal barrier coatings especially in aerospace application. However, this process involves many parameters and complex phenomena with large spans of time and space scales in many physical mechanisms, like droplet break-up, liquid droplet evaporation, and various physical phenomena occurring within the suspension droplet, making it difficult to master. Especially, understanding the interactions of liquid drop submitted to plasma with the submicronic suspended particles is essential for material process optimization and control. For SPS understanding, a meaningful modelling of suspension treatment requires a prior analysis of these physical mechanisms and their characteristic times. This study details the different phenomena, their significance and characteristic timescales as well as the selection of the main governing forces acting between the different continuous and discrete phases (plasma, liquid, submicronic particles). We explore associated mechanisms: droplet breakup, carrier liquid evaporation, convective mixing and submicronic particle diffusion within the droplets. These mechanisms involve mass and heat transfer, that should condition particle agglomeration morphology before melting.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 356-364, April 29–May 1, 2024,
Abstract
View Paper
PDF
Coating adhesion by thermal spraying method requires sufficient surface roughness on particle scale particles impacting the surface, particularly in the case of plasma spraying with particle melting state. Grit blasting process is mainly used to create the fine asperities required for spread particles to adhere. To further increase adhesion, the use of laser texturing for metallic substrates is benefit and is already well documented in literature. In the case of ceramic substrates such as alumina, grit blasting with corundum particles is no longer effective in creating a roughness of a few micrometers. Laser texturing therefore appears to be a potential candidate for generating adhesion in coatings. In this work, adhesion mechanisms of three different coatings produced by Atmospheric Plasma Spraying (APS) on a textured alumina substrate were investigated. The influence of substrate surface texturing by two different laser methods, a pulsed nanosecond laser and a continuous laser, was studied. YSZ was chosen as a potential Thermal Barrier Coating (TBC) and Al 2 O 3 and Y 2 O 3 were selected as bondcoats to observe the variation of adhesion mechanisms on ceramic substrates. Textured patterns and coating microstructures were observed by numerical and electron microscopy. Different adhesion mechanisms occurred depending on coating material. Either the geometrical parameters of the pattern and the surface roughness developed by a nanosecond laser and a continuous laser respectively, can promote mechanical anchoring and thus, a real adhesion.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 376-381, April 29–May 1, 2024,
Abstract
View Paper
PDF
Bond coats are used to protect the superalloy from oxidation and to serve as a bond between the ceramic thermal barrier coating (TBC) layer and the superalloy. During high temperature exposures, a thermally grown oxide (TGO) layer forms between the bond coat and the topcoat due to oxygen diffusion, leading to coating failure in the components. This study aimed to investigate the microstructure evolution of three TBCs with different cold-sprayed bond coat alloys after undergoing isothermal heat treatments. The TBCs were heat treated at 1100 °C for durations of 12, 25, and 50 hours to observe the effects of temperature on the microstructure and phase distribution. The microstructure of heat-treated bond coat alloys was examined using scanning electron microscopy and x-ray diffraction. The findings are discussed in relation to the characteristics of the coating alloy and the application process.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 594-610, April 29–May 1, 2024,
Abstract
View Paper
PDF
To achieve higher engine combustion efficiency while reducing emissions, it is necessary to address the challenges posed by elevated operating temperatures. High Entropy Alloys (HEAs) have emerged as promising materials for this purpose, offering exceptional properties at high temperatures, including synergistic effects and excellent resistance to oxidation and corrosion. In this study, a FeCoNiCrAl HEA was investigated as a bond coat material due to its excellent balance of strength and ductility, coupled with outstanding oxidation resistance. It was deposited using HVAF M3 and i7 guns equipped with different nozzles/powder injectors and pressures. Notably, this research marks the first study of the i7 gun globally for the HEA bond coat, coupled with the optimization of HVAF parameters for both i7 and M3 guns. Characterization of both powder and as-sprayed samples was carried out using X-ray Diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDS), and Field Emission Scanning Electron Microscopy (FESEM) techniques. The results revealed the formation of a dense and homogeneous microstructure. Additionally, isothermal oxidation tests were conducted to analyze the behavior of the thermally grown oxide. After 50 hours at 1000 °C, a dense, uniform, and thin alumina TGO layer was observed to have formed. These tests revealed that FeCoNiCrAl HEA exhibits significant potential to enhance oxidation resistance at high temperatures.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 759-767, April 29–May 1, 2024,
Abstract
View Paper
PDF
The multi-layered thermal barrier coatings (TBC) are commonly used in the systems exposed to extensive heat, such as jet engines or gas turbines. The testing of coatings' performance is usually carried out using electric or gas furnace. Concentrated solar power (CSP) could provide cost-effective and environmentally friendly alternative using natural energy source. Moreover, it can also simulate materials exposure in real applications, e.g., in solar power-plants. In this study, possibility of using concentrated solar power to test the performance of hybrid YSZ-based TBCs prepared by hybrid water/argon-stabilized plasma (WSP-H) technology was studied for the first time. In service, TBC top-coat layer may be exposed also to so-called CMAS air-borne particles occurring in the atmosphere which may melt at elevated temperatures and penetrate the coating microstructure, inducing crystallographic and volumetric changes therein. Therefore, testing with the presence of CMAS particles was also included in this study to observe its influence on the coating microstructure under solar irradiation. Changes of the coating microstructures were studied using SEM analysis and X-ray diffraction.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 1-8, May 22–25, 2023,
Abstract
View Paper
PDF
The influence of air plasma sprayed alumina coating geometry, microstructure, interface roughness on its delamination and crack propagation resistance during low temperature thermal cycling, i.e. thermal mismatch stress, is investigated both numerically and experimentally. Previous studies on thermal cycling loading concentrate on flat, numerically designed locally curved specimens and/or mathematically modeled roughness without extension towards real coating morphology, which renders the conclusions less practically driven. Results show that arbitrarily oriented cracks originate predominantly near the coating/substrate interface and propagate along zones of high tensile and shear residual stress. The crack path deflection was attributed to the complex stress concentration structure resultant from the intricate microstructural porosity and coating general convex geometry. Microstructural features such as porosity increase the interfacial and coating tensile stress, which may lead to important delamination processes even during low temperature thermal cycling.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 62-69, May 22–25, 2023,
Abstract
View Paper
PDF
A new challenge in the transport systems concerns with improving efficiency. Thermal swing coatings are interesting candidates for internal combustion engines due to their potential to reduce cooling requirements and increase efficiency. K 2 Ti 6 O 13 (KTO) thermal barrier coatings (TBCs) were prepared by atmospheric plasma spraying through powder structure design and optimization of deposition conditions. The thermophysical properties of plasma-sprayed KTO deposits and their effect on the thermal swing have been investigated. Their thermal conductivities were tested by a laser flash method and the thermal performance of the coatings was further examined by thermal swing test. The phases, nominal chemical compositions and microstructure of KTO deposits were characterized by X-ray diffraction (XRD) and scanning electron microscopy combined with energy dispersive spectrometry (SEM-EDS). The results indicated that the chemical composition change occurs to the coatings resulting in a deviation from nominal stoichiometry due to chemical reactions between the plasma gas and particles. The thermal conductivity of the coating is very sensitive to the coating compositions, and the coating prepared using porous powder under pure argon presents a single K 2 Ti 6 O 13 phase and high porosity, and the lowest thermal conductivity of 0.85 W/m·K.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 365-372, May 22–25, 2023,
Abstract
View Paper
PDF
Ni/Co-based alloys have been widely employed as bond coats (BCs) in thermal barrier coatings (TBCs) to provide oxidation resistance through the formation of a dense thermally grown oxide (TGO) layer. TGO thickening is a major contributor to TBC failure. Conventional approaches to minimize its growth have included refinement/optimization of the BC composition, deposition techniques, and post-treatments. However, these approaches have only led to incremental improvements in TBC performance and do not directly address the effect of the thin interfacial oxide layer on the TBC lifetime. In a shift from conventional thinking, the development of an Al 4 C 3 -Ni alloy composite BC aims to overcome the challenges generated by current TGOs. Post-deposition heat treatment tailors the coating microstructure to form a continuous internal carbide network. At elevated temperatures, the Al 4 C 3 preferentially oxidizes to form an interlacing protective Al 2 O 3 “root” that provides better TGO anchoring and reduces TBC thermal mismatch with the substrate. In this paper, the coatings were manufactured through gas-shrouded plasma spraying using various parameters to optimize the degree of inflight carbide dissolution and minimize the extent of coating porosity and cracking. XRD and carbon analysis were performed on the coatings and the microstructure was observed using SEM. Differences between coatings are discussed in relation to the spraying parameters.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 422-427, May 22–25, 2023,
Abstract
View Paper
PDF
Hybrid plasma spraying combines plasma spraying of dry powders and liquids (suspensions and solutions). Combination of these two approaches allows deposition of microstructures consisting of both conventional coarse and ultrafine splats. Moreover, splats with dissimilar size may have also different chemistry. Such combination is potentially interesting for many fields of thermal spraying, including thermal barrier coatings (TBCs), as novel microstructures may be economically and relatively easily obtained. The technology has recently reached a level, where coatings with interesting hybrid microstructures may be reliably deposited, so that their potential for practical applications may be evaluated. In this study, first experimental TBCs with YSZ-based hybrid topcoat were deposited by hybrid water/argon stabilized plasma (WSP-H) technology. Al 2 O 3 and YAG were selected as secondary phase deposited from suspension as both provide strong materials contrast in scanning electron microscope (SEM) so they can be used as “markers” in the coating microstructure. Samples were exposed to thermal cycling simulating in-service TBC conditions in order to test their thermal shock resistance. Changes of the coating microstructure were studied by SEM analysis and X-ray diffraction.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 625-632, May 22–25, 2023,
Abstract
View Paper
PDF
Driven by the search for an optimum combination of particle velocity and process temperature to achieve dense hard metal coatings at high deposition efficiencies and powder feed rates, the high velocity air-fuel spraying process (HVAF) was developed. In terms of achievable particle velocities and temperatures, this process can be classified between high velocity oxy-fuel spraying (HVOF) and cold gas spraying (CGS). The particular advantages of HVAF regarding moderate process temperatures, high particle velocities as well as high productivity and efficiency suggest that the application of HVAF should be also investigated for the manufacture of MCrAlY (M = Co and/or Ni) bond coats (BCs) in thermal barrier coating (TBC) systems. In this work, corresponding HVAF spray parameters were developed based on detailed process analyses. Different diagnostics were carried out to characterize the working gas jet and the particles in flight. The coatings were investigated with respect to their microstructure, surface roughness and oxygen content. The spray process was assessed for its effectiveness. Process diagnostics as well as calculations of the gas flow in the jet and the particle acceleration and heating were applied to explain the governing mechanisms on the coating characteristics. The results show that HVAF is a promising alternative manufacturing process.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 647-652, May 22–25, 2023,
Abstract
View Paper
PDF
Thermal barrier coatings have provided a revolution in the industry as they allow a higher operating temperature of equipment, improving the efficiency of gas turbines. However, one of the biggest challenges in terms of increasing the lifespan of TBC systems is the attack of fused silicates or simply CMAS (Calcium-Magnesium-Alumina-Silicate). CMAS are particles from the environment that can penetrate the TBC structure and cause delamination of the coating when exposed to high temperatures during thermal cycling. In this study, a plasma sprayed YSZ coating in the as coated and surface treated condition were given CMAS depositions from various preparation methods, and then subjected to thermal cycles at different evaluation temperatures and exposure times. The permeability of the ceramic layer and the penetration path of CMAS at different temperature levels were evaluated, as well as the penetration characteristics in relation to the microstructure of the ceramic layer. X-Ray diffraction and Scanning Electron Microscopy were used to characterize the applied CMAS and the penetration kinetics and conditions. Samples with longer exposure time had a considerable volume increase. The conditions to guarantee the formation of the silicate and its consequent wettability are also discussed.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 653-658, May 22–25, 2023,
Abstract
View Paper
PDF
In the study, Axial Suspension Plasma Spray (SPS) was used to produce a range of columnar microstructures from Yttria Stabilized Zirconia (YSZ) suspension after an extensive experimental design. The optimized microstructure was applied to a multi-layer GZ/YSZ system, in which both layers were sprayed with SPS. In addition to SPS, a new GZ coating using Axial Solution Precursor Plasma Spray (SPPS) was developed and deposited on top of the SPS GZ coating. The durability in the furnace cycling test (FCT), as well as the consequences of CMAS infiltration into the columnar coatings was extensively studied on different microstructures. Preliminary CMAS test on the SPS coatings infiltrated them completely, leading to delamination. To minimize the detrimental effect of CMAS on the underlying SPS, the dense solution precursor GZ layer was aimed to act as a sealant to protect the underlying columnar SPS-GZ layer from molten CMAS infiltration.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 659-666, May 22–25, 2023,
Abstract
View Paper
PDF
Due to the aggressive operation conditions of turbine hot sections, protective coatings are required to provide oxidation and hot corrosion resistance for superalloy components. Thermal barrier coatings (TBCs) are comprised of a ceramic top coat and a metallic bond coat (BC) and are typically used as thermal protection systems against these aggressive environments. Conventional BC materials are MCrAlX, with M being metals or alloys (e.g., Ni, Co or NiCo) and X being reactive elements such as Y, Hf, Ta, Si. Due to their strength, thermal stability, and oxidation resistance, high-entropy alloys (HEAs) have presented promise for use as BC materials in hightemperature applications. Owing to its cocktail effect, optimally chosen HEAs could help to enhance the hot corrosion resistance of BCs by forming a more continuous, dense, and uniform thermally grown oxide (TGO). Furthermore, HEAs could help to control the diffusion between the bonding layer and substrate in elevated temperature environments. This paper will discuss the thermodynamic, mechanical, and microstructural behaviour of HEAs. Furthermore, the selection and usage of HEAs as BCs will be explored and compared to conventional BCs in TBC systems.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 667-674, May 22–25, 2023,
Abstract
View Paper
PDF
Multi-layered thermal barrier coatings (TBCs) are deposited on gas-turbine metallic components to protect them against high temperatures, oxidation, and corrosion. However, TBCs have limited working temperatures and lifetimes due to their material properties. Several approaches are being tested to increase TBC topcoats' phase stability and properties. Increasing entropy to stabilize phases is a concept introduced in 2004 and required decreasing the Gibbs free energy. Many high-entropy ceramics are being developed for structural and functional applications, and high-entropy oxides (HEOs) are promising TBC ceramics due to their unique characteristics. HEOs are single-phase solid solutions that contain five or more cations, usually a mixture of transition metals and rare earths. Due to the cocktail effect, the final material has a different behavior from its constituents, making it a viable method to improve the properties of traditional materials. Generally, high entropy materials are characterized by three additional phenomena: sluggish diffusion, severe lattice distortion, and high entropy. A review of possible improvements in the lifetime of TBC topcoats using different HEOs in terms of their composition, properties, and stability are presented here. Different HEOs are then examined and various thermophysical properties, high-temperature stability, and sintering resistance are discussed.
1