Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-11 of 11
Bioinert ceramics
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 585-589, May 24–28, 2021,
Abstract
View Paper
PDF
This study investigates the effect of composition on the antibacterial and antiviral properties of hydroxyapatite/titania composite coatings deposited by suspension plasma spraying. Hydroxyapatite is a bioceramic material used as a plasma-sprayed coating to promote osseointegration of femoral stems. TiO2 has promising photocatalytic activity and good efficiency in destroying bacteria, viral species, and parasites. Prior to coating, substrates were grit blasted, ultrasonically cleaned, and heated to enhance adhesion strength. The microstructure of the resulting coatings was then characterized using XRD and Raman spectroscopy. Test results indicated that SPS transformed Ti2O3 into TiO2 with mixed phases. Ti4O7 and Ti3O5 phases were also identified, which show photocatalytic activity due to oxygen vacancies. Antibacterial and antiviral tests were conducted as well.
Proceedings Papers
ITSC 2004, Thermal Spray 2004: Proceedings from the International Thermal Spray Conference, 53-60, May 10–12, 2004,
Abstract
View Paper
PDF
Ultra-fine hydroxyapatite (HA) powders were produced with radio frequency (RF) suspension plasma spraying (SPS). This novel technique utilizes the inherent properties of the RF plasma enabling axial feeding of the suspension into the plasma producing spherical ultra-fine HA powders. These powders were examined by XRD and Rietveld analysis using the Rietquan 2.3 Quantitative Analysis software package. The aim of the analysis was to determine the various amounts of decomposed phases and amorphous content after SPS of HA. Results showed that the amount of decomposed phases rose up to a plate power of 15 kW there after decreasing at higher plate powers. The amorphous phase however kept increasing with plate power reaching about 35 wt.% in the powders sprayed at 21 kW. These trends have led to the belief that the phase content and hence, the characteristics of the powders are controlled mainly by the competitive processes of decomposition and melting and evaporation within the plasma. The morphology of the powders was also observed through TEM and changes in molecular structure were investigated by FTIR. DSC was carried out to observe the crystallisation of amorphous calcium phosphate into HA.
Proceedings Papers
ITSC 2003, Thermal Spray 2003: Proceedings from the International Thermal Spray Conference, 1285-1290, May 5–8, 2003,
Abstract
View Paper
PDF
Hydroxyapatite (HA)/titania composite coatings were deposited on titanium alloy substrates using the high velocity oxy-fuel (HVOF) technique. Chemical reactions between the mechanically blended HA and titania particles in the HVOF stream were analyzed. Qualitative phase analysis through X-ray diffraction (XRD) on the composite coatings showed that the chemical reaction between titania and HA occurred during the impingement stage. High temperature differential scanning calorimeter (DSC) analysis revealed that the reaction temperature was 1410 C. The activation energy of the chemical reaction between HA and titania demonstrated a value of 5441.46 kJ/mol obtained through the multiple-heating-rate method. Chemical bonding caused by the reaction between the components was suggested, which may be mainly responsible for the trapping of titania particles during the impingement. Transmission electron microscope (TEM) observation identified the reaction zone and phase distribution area within the HA/titania composite coatings. It demonstrated that the reaction products located around titania were beneficial for the improvement of coating structure. Furthermore, in vitro bioactivity of the HA/titania composite coatings in simulated body fluid (SBF) was revealed. Results showed that the coatings were fully covered by a bone-like apatite layer after 7 days’ incubation.
Proceedings Papers
ITSC 2002, Thermal Spray 2002: Proceedings from the International Thermal Spray Conference, 721-726, March 4–6, 2002,
Abstract
View Paper
PDF
This paper investigates the effect of laser post-treatment on cladded coatings deposited by different thermal spray methods. A wide range of coatings, including a VPS sprayed alloy, three APS sprayed oxide ceramics, and two composites, are treated with either a CO 2 or pulsed Nd:YAG high-power laser. The microstructure and wear resistance of the layers are examined before and after treatment and the interaction between the laser and material is modeled using Fusion-2D. Paper includes a German-language abstract.
Proceedings Papers
ITSC 2002, Thermal Spray 2002: Proceedings from the International Thermal Spray Conference, 1024-1028, March 4–6, 2002,
Abstract
View Paper
PDF
This paper examines the influence of spark plasma sintering (SPS) on plasma-sprayed hydroxyapatite (HA) coatings. For comparison purposes, a conventional heat treatment is also carried out. The surface microstructure as well as the crystallinity of each layer is determined by means of SEM and XRD analysis. Test results show that the crystallinity of the layers increases with increasing SPS temperature up to 800 °C and a large amount of β tricalcium phosphate is formed. Paper includes a German-language abstract.
Proceedings Papers
ITSC 2002, Thermal Spray 2002: Proceedings from the International Thermal Spray Conference, 192-195, March 4–6, 2002,
Abstract
View Paper
PDF
Crystallized calcium carbonate, CaCO 3 , is a mineral phase that occurs in nature as aragonite. It is well known that CaCO 3 shows excellent chemical interaction and intensive binding in direct contact to bone structures. This paper discusses the development of a plasma spraying process that shows promise for producing dense calcium carbonate layers with good adhesion properties. Tests reveal that the resulting coatings are fully biocompatible and have faster resorption times than plasma sprayed hydroxyapatite. Paper includes a German-language abstract.
Proceedings Papers
ITSC 2002, Thermal Spray 2002: Proceedings from the International Thermal Spray Conference, 220-224, March 4–6, 2002,
Abstract
View Paper
PDF
In this paper, aramid and mullite light fiber fabrics are coated with different ceramics by atmospheric plasma spraying. To check the suitability of the process for as many technical applications as possible, different ceramic materials are used and multilayer coatings are produced as well. Test results for bioinert and biocatalytic materials, such as titanium dioxide and aluminum oxide, and bioactive hydroxyapatite show that the concept has good potential for a range of biomedical applications. Paper includes a German-language abstract.
Proceedings Papers
ITSC 2001, Thermal Spray 2001: Proceedings from the International Thermal Spray Conference, 245-250, May 28–30, 2001,
Abstract
View Paper
PDF
As ceramic materials, the use of hydroxyapatite (HA) in clinical applications is severely limited by its intrinsic poor mechanical properties. The incorporation of some bioinert ceramics is believed to be a way to improve the mechanical reliability of HA matrix. HA coatings with titania addition were produced by using high velocity oxy-fuel (HVOF) spraying process in the present study. The mechanical properties of the as-sprayed coatings in terms of adhesive strength, shear strength and fracture toughness were investigated aiming to reveal the reinforcing effect of the titania addition in HA coatings. Qualitative phase analysis through X-ray diffraction (XRD) showed that mutual chemical reaction between TiO 2 and HA occurred during coating formation, from which CaTiO 3 was resulted. Totally unmelted titania powders were observed which suggests that the mutual reaction locates at HA/TiO 2 splats' interface. Significant influence of coating microstructure on mechanical properties was revealed. As the content of titania in HA coatings reached 20vol%, the adhesive strength decreased largely. As the content of titania reached 30vol%, the further augmentation of the adhesive strength of is possibly resulted from the improved coating microstructure. The fracture toughness exhibited the values of 0.48 Mpa ⋅ m ½ 0.60 Mpa ⋅ m ½ and 0.67 Mpa ⋅ m ½ for pure HA coating, 10vol% TiO 2 blended HA coating and 20vol% TiO 2 blended HA coating, respectively.
Proceedings Papers
ITSC2000, Thermal Spray 2000: Proceedings from the International Thermal Spray Conference, 803-811, May 8–11, 2000,
Abstract
View Paper
PDF
Calcined spray-dried hydroxyapatite (Ca10(PO4)(OH)6; i.e., HA) powders were atmospherically plasma sprayed (APS) using various process parameters. The resulting phases within the coating surface and the interface between the coating and the substrate were analyzed using X-ray diffraction (XRD) methods. This XRD revealed the presence of both amorphous (i.e., amorphous calcium phosphate: ACP) and crystalline phases. The crystalline phases included both HA and some impurity phases from the decomposition of HA, such as tricalcium phosphate (α-TCP and β-TCP), tetracalcium phosphate (TTCP) and calcium oxide (CaO). The crystallinity of HA decreased with increasing spray power and stand-off distance (SOD). The percentage of all impurity phases increased with the spray power. The percentage of both TCP and TTCP decreased with the SOD while the CaO percentage increased. In addition, the percentage of ACP and CaO were higher in the interface than at the surface of the coating while the percentage of TCP and TTCP exhibited the opposite effect.
Proceedings Papers
ITSC2000, Thermal Spray 2000: Proceedings from the International Thermal Spray Conference, 625-633, May 8–11, 2000,
Abstract
View Paper
PDF
This paper compares two types of hydroxyapatite (HA) composite coatings, HA/Ti-6Al-4V and HA/Y-ZrO2. The powders used in the study were prepared using a slurry process then deposited by plasma spraying. The resulting coatings were characterized based on their microstructure, mechanical properties, and biocompatibility. Both composite coatings performed better than pure HA coatings in tensile adhesion and indentation tests. Testing also revealed that the HA/Y-ZrO2 coatings had favorable strength and fracture toughness and that the HA/Ti-6Al-4V coatings had good affinity to living tissue and sufficient mechanical strength.
Proceedings Papers
ITSC1998, Thermal Spray 1998: Proceedings from the International Thermal Spray Conference, 999-1005, May 25–29, 1998,
Abstract
View Paper
PDF
Bond coats based on bioinert ceramic materials such as titania and zirconia were developed to increase the adhesion strength of the coating system hydroxyapatite/bond coat to Ti6A14V alloy surfaces used for hip endoprostheses and dental root implants. The bond coats improved the adhesion strength, measured by a modified ASTM D3167-76 peel test, by 50 to 100% and also the resorption resistance as determined by in vitro leaching in simulated body fluid (Hank's Balanced Salt Solution, HBSS) for up to 28 days.