Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-7 of 7
Tungsten carbide
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 1081-1084, May 2–4, 2005,
Abstract
View Paper
PDF
Wear resistance of materials in very aggressive environment of different industrial sectors like drilling, mining, cutting, etc, appears to be critical and many efforts have been made to limit the major economic loss that represents a broken or damaged tool. The objective of the CLADIAM project (G5ST-CT-2002-50179) is to develop a cladding technique to coat complex parts based on an innovative cladding material composed of diamond pellets and cast spherical tungsten carbide particles using an automated high power diode laser (HPLD) equipment. The result of these two and a half years of work has led to the finalization of following techniques: A pelletizing alloy that takes into account the constraints of laser cladding, Enrobing of diamond particles to avoid their damage, An industrial technique, technically and economically efficient, of laser cladding that allows the realization of complex shapes. The combination of a new technique of wear and abrasion tests has led to the characterization of the obtained cladding. The results have been compared with the tests on industrial parts in severe and even extreme wear conditions. The development of this new cladding technology has been possible thanks to the use, the characterization and the optimization of specific cladding nozzles associated with the special beam of high power diode laser. The results obtained are very encouraging and open the doors to new claddings that combine the specific advantages of diamond and tungsten carbides for the nature of cladding, but also the fineness of the structure, the improvement of behaviour in wear conditions, the small thermal impact of the parts, some of the well known advantages of laser cladding.
Proceedings Papers
ITSC1998, Thermal Spray 1998: Proceedings from the International Thermal Spray Conference, 193-198, May 25–29, 1998,
Abstract
View Paper
PDF
WC-Co and WC-CoCr coatings were deposited with the JP-5000 liquid fuel HP/HVOF system using various thermal spray powder types. The microstructure, microhardness, deposition rate and wear resistance of the coatings were characterized. The results show that these coatings provide significantly more protection from dry three-body abrasion than from dry sand erosion, when compared to mild steel. They also provide more advantage at low angles of erosion than at high angles of erosion. Furthermore, the coating composition was found to have a significant effect on the wear rates, with WC-CoCr providing the best wear resistance even after taking the higher cost of the powder into account. The powder manufacturing route had only a secondary effect on the wear rates, except in the case of fused and crushed powder, which produced an inferior coating.
Proceedings Papers
ITSC1997, Thermal Spray 1997: Proceedings from the United Thermal Spray Conference, 737-742, September 15–18, 1997,
Abstract
View Paper
PDF
Tungsten caibide (WC) thermal spray coatings are being used for wear protection on selected components of aircraft. Tungsten carbide coatings are being used on aircraft flap tracks and fan and compressor blade mid-span dampers. However, a larger use of tungsten carbide coatings is being considered for other commercial aircraft applications where it would be used as a replacement for chrome plating. For instance, WC coatings are currently being tested on aircraft landing gear parts. One factor that affects the suitability of WC coatings for these applications is the fatigue life of the coated part. Coatings, whether chrome plating or thermal spray coating, can reduce the fatigue life of the part compared to an uncoated part. This study compares the fatigue life of uncoated 6061 aluminum specimens to the fatigue life of WC thermal sprayed coated 6061 aluminum specimens. The relation between the residual stress level in the coating and the fatigue life of the specimens is also investigated. Fatigue tests were run on cantilever flat beam specimens that were coated on one side. Specimens were cycled in bending so that the coatings experienced tensile fatigue stresses. Residual stress levels for each type of coating were determined using the Modified Layer Removal Method on specimens processed along with the cantilever flat beam specimens. Test results show that the fatigue life of the WC coated specimens is directly related to the level of compressive residual stress in the coating.
Proceedings Papers
ITSC1997, Thermal Spray 1997: Proceedings from the United Thermal Spray Conference, 783-789, September 15–18, 1997,
Abstract
View Paper
PDF
WC-Co-Cr powders with different WC particle size have been sprayed by the HVOF process. At constant spraying conditions the powders give coatings of different quality. The deposition efficiency during spraying of powders containing large WC particles was found to be low compared to powders with finer WC grains. In addition the amounts of porosity and cracks were different. The coatings have been characterised by different methods. Erosion and erosion-corrosion tests showed that the WC particle size also influence the wear resistance of the coatings. Small WC particle size was found to be beneficial. Chemical composition of the matrix was also found to be decisive for the coating properties. An increase of the chromium content improved the erosion-corrosion resistance.
Proceedings Papers
ITSC1996, Thermal Spray 1996: Proceedings from the National Thermal Spray Conference, 141-146, October 7–11, 1996,
Abstract
View Paper
PDF
Two different W-Co-C powders were used in three deposition devices, the Super D-Gun, Jet Kote, and JP-5000 to produce coatings for laboratory immersion tests in molten zinc and %55Al-Zn. Resistance was evaluated as time to failure. Scanning electron microscopy and X-ray diffraction were used to characterize the structures ssid failure mechanism. All coatings were found to fail when the molten metal breached the coating thickness at weak spots and spread out over the underlying interface to lift the coating away from the underlying 316L substrate. These weak spots were "pits" on one Super D-Gun coating (the most resistant coating) and cracks on all the other coatings. No diffusion of zinc through the tungsten carbide coatings was observed.
Proceedings Papers
ITSC1996, Thermal Spray 1996: Proceedings from the National Thermal Spray Conference, 177-184, October 7–11, 1996,
Abstract
View Paper
PDF
The high quality of the thermally sprayed tungsten carbide coatings has been attributed to high particle velocity and relatively low particle temperature. Such thermal spray conditions can be obtained with the HVOF spray process. In comparison to the plasma spray process, in the HVOF spray process the high particle velocity and optimum particle temperature have been associated with very high gas velocity (>1000 m/s) and a relatively low gas temperature (< 2700 °C). In this work tungsten carbide coatings (WC-17Co) were sprayed by the HVOF process with a low and a high gas velocity of 1050 and 1560 m/s, respectively. The spray tests were carried out also with different hydrogen/oxygen ratios. The coatings were abrasion tested in order to find out how gas velocity and the fuel/oxygen ratio affect the coating quality and wear rate. Wear rates of the HVOF sprayed coatings were found to decrease with the higher combustion gas velocity. The coating quality and wear rate became also less sensitive to gas parameters with the increasing gas velocity. The coating microhardness and wear rate were also compared to hot isostatic pressed (HIP) reference material from the same spray powder lot. The HIP sintered test piece was found to be less wear resistant than the corresponding thermally sprayed coatings.
Proceedings Papers
ITSC1996, Thermal Spray 1996: Proceedings from the National Thermal Spray Conference, 875-883, October 7–11, 1996,
Abstract
View Paper
PDF
The full potential of rolling element bearings operating in specialised conditions such as high speed and corrosive environments are realised using surface coatings. Tungsten Carbide coating by thermal spray HVOF and D-Gim processes are considered for these applications. An experimental approach using a modified four-ball machine simulates the tribological conditions within a rolling element bearing. The fatigue failure modes of the tungsten carbide coating in rolling contact with steel and silicon nitride are examined using conventional surface analysis techniques. The stress fields within the coating are examined using traditional contact theory and residual stress measurement by X-ray diffraction. The residual stress measurements of the pre-test coating, the contacting surface and the fatigue failures are described. Results of residual stress relating to orientation, failure depth, coating thickness are discussed along with the fatigue failure mode.