Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
High-carbon steel
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 235-238, June 7–9, 2017,
Abstract
View Paper
PDF
In automotive industry, thermal spray process is used to reduce engine weight by replacing cast iron liners inserted in cylinder bores. Especially, twin wire arc spray is one of widely used thermal spray processes with inexpensive cost and high deposition rate. In this study, two kinds of wire materials, low carbon steel (0.07 wt.%C) and high carbon steel (0.80 wt.%C) were deposited by twin wire arc spray process using two kinds of process gas (i.e., compressed air and nitrogen) in order to elucidate effects of carbon contents of ferrous coating and process gas type on the hardness and wear resistance of coating. In case of hardness, low carbon steel coatings had higher hardness when air was used as process gas whereas high carbon steel coatings had higher hardness when nitrogen was used, which was caused by the counter effects of carbon loss and oxide formation. The results of sliding wear test in lubricated condition indicated that coatings with higher hardness have better wear resistance and oxides improve wear resistance by playing a role as solid lubricant. The main wear mechanism was splat delamination induced by inter-splat crack, and traces of other wear behaviours such as splat tip fracture and abrasive wear were also observed.
Proceedings Papers
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 88-93, May 21–23, 2014,
Abstract
View Paper
PDF
In this investigation, high carbon steel wire is deposited on aluminum cylinder bores with different surface profiles by plasma transferred wire arc (PTWA) spraying. The first part of the study deals with feedstock materials, process parameters, droplet formation, and splat morphology. The second part deals with bead profiles, build rates, and the influence of substrate composition, temperature, and surface profile on coating characteristics including microstructure, morphology, composition, and bond strength.