Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
Cantilever beam bend testing
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2000, Thermal Spray 2000: Proceedings from the International Thermal Spray Conference, 1291-1295, May 8–11, 2000,
Abstract
View Paper
PDF
In situ values of Young's modulus and Poisson's ratio for thermal spray coatings are needed to evaluate properties and characteristics of thermal spray coatings such as residual stresses, in-service stresses, bond strength, fracture toughness, and fatigue crack growth rates. It is important to have methods documented in detail so that people can follow the document and use the methods. Such a document requires more pages than are allowed in conference proceeding and journal papers. Thus, Recommended Practices and Standards describing these methods are needed. Currently, there is not a recommended practice or standard for evaluating Young's modulus and Poisson's ratio for thermal spray coatings. The ASM International Thermal Spray Society has recognized this need and formed a committee on Recommended Practices for Thermal Spray Coatings. This paper describes one of the recommended practices being written by the Mechanical Properties Evaluation Subcommittee of the Recommended Practices Committee. The specimen is a coated substrate in the form of a cantilever beam. The method is easy to use and inexpensive. The equipment needed is a vise or clamping fixture, strain gages, a strain indicator, a micrometer, a ruler, a hanger, and a set of weights. The specimen is easy to machine and spray. The loading is easy to apply and remains constant during readings. The method can be used to evaluate Young's modulus and Poisson's ratio in tension or compression. A description of the method, a verification, and a sensitivity analysis was done and published in Reference [1]. Some of the details of implementing the method and the data sheet are presented here.
Proceedings Papers
ITSC1999, Thermal Spray 1999: Proceedings from the United Thermal Spray Conference, 835-840, March 17–19, 1999,
Abstract
View Paper
PDF
Thermal barrier coatings systems are composed of a zirconium dioxide-(6 to 8 wt.%) yttrium oxide ceramic top coat about 300-500 micrometer in thickness, deposited either by air plasma spraying or electron beam assisted physical vapour deposition, over an MCrAlY (M = Ni, Co or NiCo) bond coat, about 100 micrometer thick, deposited by vacuum plasma spraying. In this paper, the stiffness of as-sprayed zirconia is measured using three different techniques, namely cantilever beam bending, ultrasonic resonance and nanoindentation. The paper explores the effect of post-deposition heat treatment on the value obtained. The results show that the cantilever bend technique, employed with a high precision scanning laser method of displacement measurement, was found to be the most reliable procedure. Paper includes a German-language abstract.
Proceedings Papers
ITSC1997, Thermal Spray 1997: Proceedings from the United Thermal Spray Conference, 251-257, September 15–18, 1997,
Abstract
View Paper
PDF
The Young's modulus of the ceramic top coat of a plasma sprayed thermal barrier coating (TBC) has been reported to vary by as much as a factor of three with changes in processing parameters and by as much as a factor of four due to prolonged thermal exposure. Since the residual stress is expected to vary directly with the modulus of the ceramic layer, it follows that a change in modulus will change the residual stresses in the ceramic layer. The objective of this study was to evaluate the modulus of plasma sprayed coatings as a function of thermal cycle exposure and silica content of the ceramic. The study employed the Cantilever Beam Bending Method to examine Young's modulus for an yttria stabilized zirconia TBC applied by plasma spraying, for zero and ten thermal cycles and for silica contents of 0.1% and 1.0%. Results are discussed in terms of mechanisms that may affect modulus and the effect of modulus variations on residual stresses.