Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Inclusions
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 343-355, April 29–May 1, 2024,
Abstract
View Paper
PDF
The Ti-6Al-4V alloy is widely used in aerospace applications for its excellent mechanical properties, however, it presents low wear resistance. It is often coated with a cermet using high-velocity oxy-fuel (HVOF) spraying to improve its wear performance. The Cr3C2-NiCr cermet becomes particularly interesting since it is non-carcinogenic, compared to traditional cermet coatings containing tungsten-cobalt compounds. While the improvement in wear resistance of Ti-6Al-4V with this coating has been demonstrated, its impact on the fatigue performance of the alloy remains to be studied. This is precisely the aim of this study, which focuses on the fatigue life of a Cr3C2-25NiCr-coated Ti-6Al-4V alloy. Among the various influencing factors, surface preparation represents a significant source of crack initiation, particularly in the case of sandblasted surfaces. Indeed, the inclusion of fragmented alumina particles can produce stress concentration zones. Thus, laser texturing, which is a method involving the creation of anchoring points through controlled ablation, can be considered today as a less harmful surface preparation technique. The results obtained from cyclic tensile fatigue tests with a stress ratio of 0.1 for these two surface preparation methods are presented in this paper.
Proceedings Papers
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 146-156, May 21–23, 2014,
Abstract
View Paper
PDF
In this study, Fe-Cr-Al and Fe-Cr-Al-B cored wires were produced and deposited on steel substrates by wire arc spraying. The microstructure, hardness, and high-temperature corrosion behavior of the cored-wire deposits were evaluated in comparison to Fe-Cr and commercial Fe-Cr-Al solid-wire coatings. All coating samples exhibited lamellar microstructures with oxide inclusions, the fewest being in the Fe-Cr-Al-B deposits. Microhardness was measured along coating cross-sections at various distances from the coating-substrate interface. The Fe-Cr coatings were the hardest, followed by the Fe-Cr-Al-B deposits. Thermogravimetric analysis was used to evaluate high-temperature corrosion behavior in a molten salt environment under cyclic conditions, with the Fe-Cr-Al-B cored-wire deposits performing the best.