Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 92
Deformation and fracture
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
Understanding the Effect of Mo Concentration on the Strength of AlCoCrFeMo High-Entropy Alloy Using Atomistic Simulations
Available to Purchase
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 100-107, April 29–May 1, 2024,
Abstract
View Papertitled, Understanding the Effect of Mo Concentration on the Strength of AlCoCrFeMo High-Entropy Alloy Using Atomistic Simulations
View
PDF
for content titled, Understanding the Effect of Mo Concentration on the Strength of AlCoCrFeMo High-Entropy Alloy Using Atomistic Simulations
High-entropy alloys (HEAs) represent a new class of advanced metallic alloys that have gained significant interest. They offer a unique combination of mechanical, thermal, and functional properties, making HEAs ideal for various industrial applications. One such alloy is the recently developed equiatomic body-centred cubic phase AlCoCrFeMo. In particular, thermally sprayed AlCoCrFeMo coatings have gained wide interest due to their exceptional mechanical properties compared to common industrial steel. In the current study, the effect of Mo concentrations on the strength of single crystal AlCoCrFeMo HEA was investigated using molecular dynamics simulation and the phase stability of the alloy was studied using polyhedral template matching. Our results indicate that the local lattice distortion of the alloy is not significantly related to Mo concentration. The yield strength of AlCoCrFeMo HEA obtained through tensile loading, was found to increase with Mo concentration, at a molar ratio of Mo higher than 0.5. Investigation of the deformation behavior of the HEA revealed that bands with high shear strains evolved during plastic deformation. The formation of shear bands after the yield point elucidated the softening exhibited by the material due to localized deformation. These findings provide guidance for tailoring the mechanical properties of AlCoCrFeMo HEA by adjusting Mo concentrations, offering new avenues for designing functional coating materials.
Proceedings Papers
Numerical Simulation of the Shaft Parts Repairing Process by Laser Metal Deposition Technique
Available to Purchase
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 130-137, April 29–May 1, 2024,
Abstract
View Papertitled, Numerical Simulation of the Shaft Parts Repairing Process by Laser Metal Deposition Technique
View
PDF
for content titled, Numerical Simulation of the Shaft Parts Repairing Process by Laser Metal Deposition Technique
Restoring the damaged shaft parts to extend their service life is an economical and environmentally friendly solution. In recent years, the laser metal deposition (LMD) process has received increasing attention in component restoration. However, the residual stress and deformation inevitably occur due to the heat input, leading to the deflection of the repaired shafts. Therefore, this study aims to minimize the deflection of LMD-repaired shaft parts through parameter optimization. The width and height of the LMD deposit as a function of the laser power and traverse speed were achieved by fitting a series of one-pass experimental results. Based on it, the finite element analysis was conducted to clarify the effect of the repairing conditions (e.g., laser power, traverse speed, and initial substrate temperature) on the deflection and residual stress distribution of the shaft parts after LMD repairing. A 304 stainless steel round bar with a diameter of 6 mm was served as the component to be repaired. The deposit was 316L stainless steel, whose deposition process was realized by the element birth and death technique. The results indicated that the free-end of the specimen experienced complicated deformation during the LMD and cooling process. After cooling off, the substrate presents a residual compressive stress along the axial direction. Moreover, the substrate deflection can be reduced by improving the initial substrate temperature. This study provided an important reference for optimizing the process parameters in repairing the shaft parts.
Proceedings Papers
Exploring the Crack Propagation Behavior in Suspension Plasma Sprayed Thermal Barrier Coatings: An In-Situ Three-point Bending Study in Scanning Electron Microscope
Available to Purchase
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 139-151, April 29–May 1, 2024,
Abstract
View Papertitled, Exploring the Crack Propagation Behavior in Suspension Plasma Sprayed Thermal Barrier Coatings: An In-Situ Three-point Bending Study in Scanning Electron Microscope
View
PDF
for content titled, Exploring the Crack Propagation Behavior in Suspension Plasma Sprayed Thermal Barrier Coatings: An In-Situ Three-point Bending Study in Scanning Electron Microscope
In this study, the in-situ technique was used to observe crack formation and growth in multilayer suspension plasma spray (SPS) thermal barrier coatings (TBCs). Utilizing synchronized three-point bending (3PB) and scanning electron microscopy (SEM), coupled with digital image correlation (DIC), we provide real-time insights into strain field dynamics around cracking zones. Bending-driven failure was induced in both single and composite-layer SPS coatings to investigate the crack behavior in these columnar-structured multilayer TBCs. The real-time observations showed that columnar gaps can facilitate crack initiation and propagation from the coatings' free surface. The composite-layer SPS coating exhibits lower susceptibility to vertical cracking than the single-layer SPS coating, possibly due to the presence of a gadolinium zirconate (GZ) dense layer at the coating's free surface that enhances the bonding strength within the coating's columnar structure. The splat structure of the bond coat (BC) layer contributes to the crack path deflection, thereby potentially improving the SPS coating' fracture toughness by dissipating the energy required for crack propagation. Moreover, it was revealed that grit particles at the BC/substrate interface seem to promote crack branching near the interface, localized coating delamination, and serve as nucleation sites for crack development. Hence, optimizing the grit-blasting process of the substrate before BC layer deposition is crucial for minimizing the possibility of crack formation under operational conditions, contributing to enhanced durability and prolonged lifespan. This study underscores the critical role of in-situ observation in unravelling the complex failure mechanisms of multi-layered coatings, paving the way for the design of advanced coatings with enhanced structural complexity and improved performance for more extreme environments.
Proceedings Papers
In-Situ SEM Observation of Mechanical Failure of Hybrid Plasma Spray Coatings
Available to Purchase
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 266-277, April 29–May 1, 2024,
Abstract
View Papertitled, In-Situ SEM Observation of Mechanical Failure of Hybrid Plasma Spray Coatings
View
PDF
for content titled, In-Situ SEM Observation of Mechanical Failure of Hybrid Plasma Spray Coatings
Hybrid plasma spraying combines deposition of coatings from coarse powders and liquids (suspensions or solutions) so that the benefits of both routes may be combined. In this study, failure evolution of early-stage thermal barrier coatings (TBCs) with hybrid YSZ-YSZ and YSZ-Al 2 O 3 top-coats deposited by hybrid water/argon-stabilized plasma torch was evaluated. In-situ bending experiment was carried out in SEM to assess potential influence of the secondary miniature phase addition on the coating failure during mechanical loading. Adapted high-resolution open-source strain-mapping code GCPU_Optical_flow was used to track evolution of the local coating failure. For the tested coatings, addition of miniature phase did not weaken the hybrid coating microstructure as the crack propagation was practically insensitive to the presence of the secondary phase and dissimilar splat boundaries. Main micromechanisms of the top-coat failure were thus splats cracking, loss of cohesion (splat debonding), and mutual splat sliding.
Proceedings Papers
Effect of Surface Preparation by Laser Texturing in Thermal Spraying on the Fatigue Life of the Ti-6Al-4V Alloy
Available to Purchase
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 343-355, April 29–May 1, 2024,
Abstract
View Papertitled, Effect of Surface Preparation by Laser Texturing in Thermal Spraying on the Fatigue Life of the Ti-6Al-4V Alloy
View
PDF
for content titled, Effect of Surface Preparation by Laser Texturing in Thermal Spraying on the Fatigue Life of the Ti-6Al-4V Alloy
The Ti-6Al-4V alloy is widely used in aerospace applications for its excellent mechanical properties, however, it presents low wear resistance. It is often coated with a cermet using high-velocity oxy-fuel (HVOF) spraying to improve its wear performance. The Cr3C2-NiCr cermet becomes particularly interesting since it is non-carcinogenic, compared to traditional cermet coatings containing tungsten-cobalt compounds. While the improvement in wear resistance of Ti-6Al-4V with this coating has been demonstrated, its impact on the fatigue performance of the alloy remains to be studied. This is precisely the aim of this study, which focuses on the fatigue life of a Cr3C2-25NiCr-coated Ti-6Al-4V alloy. Among the various influencing factors, surface preparation represents a significant source of crack initiation, particularly in the case of sandblasted surfaces. Indeed, the inclusion of fragmented alumina particles can produce stress concentration zones. Thus, laser texturing, which is a method involving the creation of anchoring points through controlled ablation, can be considered today as a less harmful surface preparation technique. The results obtained from cyclic tensile fatigue tests with a stress ratio of 0.1 for these two surface preparation methods are presented in this paper.
Proceedings Papers
Evaluation of Lightning Resistance Property of Thermoplastic CFRP Metallized by Low-Pressure Cold Spray
Available to Purchase
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 521-527, April 29–May 1, 2024,
Abstract
View Papertitled, Evaluation of Lightning Resistance Property of Thermoplastic CFRP Metallized by Low-Pressure Cold Spray
View
PDF
for content titled, Evaluation of Lightning Resistance Property of Thermoplastic CFRP Metallized by Low-Pressure Cold Spray
Cold spray metallization of carbon fiber-reinforced polymers (CFRP) has attracted increasing interest for potential applications in providing lightning strike protection (LSP) to aircraft. This study aims to assess the LSP performance of cold-sprayed copper and aluminum coatings on a Polyaryletherketone (PAEK)-based carbon fiber-reinforced thermoplastic polymer (CFRTP). Lightning strike tests with a peak current of 70 kA were performed on full-surface copper and aluminum coatings, and grid-patterned aluminum coatings. The lightning strike process was captured by a high-speed camera to investigate the fracture behavior of the cold-sprayed CFRTP specimens. Results revealed that the full-surface copper coating, which had higher electrical resistivity and was thinner than the aluminum coating, experienced explosive coating fractures. Conversely, the aluminum coating incurred less damage, effectively protecting the underlying CFRTP from lightning current without visible ply lift or carbon fiber fracture. Furthermore, grid-patterned aluminum coatings also exhibited LSP capabilities, with their denser mesh reducing both the area of coating fractures and the thermal damage to the CFRTP surface.
Proceedings Papers
Studies of Particle Deformation and Microstructure Evolution Using High Strain Rate Particle Compression Test
Available to Purchase
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 528-534, April 29–May 1, 2024,
Abstract
View Papertitled, Studies of Particle Deformation and Microstructure Evolution Using High Strain Rate Particle Compression Test
View
PDF
for content titled, Studies of Particle Deformation and Microstructure Evolution Using High Strain Rate Particle Compression Test
The deformation behavior of particles plays a significant role in achieving adhesion during cold spray. The deformation behavior of the particles is associated with the fracture of the oxide layer and recrystallization, which are the key elements of the quality of cold spray. Studies of particle compression have been made to understand the deformation behavior of a particle. However, the deformation behavior of particle under controlled load and precise and high strain rate is yet to be studied. Here, we show the oxide layer fracture pattern and recrystallization regime under controlled load with a precise and high strain rate. We found that the cracks in the oxide layer initially appeared on the equator of the particle and propagated towards the edge of the top surface. Meanwhile, on the top surface, the circumferential crack was developed. On the other hand, the nanoindentation result showed that the compressed particle under a high strain rate has an unusual load-displacement behavior. Our results demonstrate that the oxide layer fracture behavior corresponds to the adhesion mechanism suggested by previous studies. Our study also revealed that recrystallization takes place within the particle under a high strain rate. We anticipate this finding to give a general insight into the deformation behavior of particles during cold spray. For instance, since the recrystallization behavior at a given strain rate can be predicted through this study, the resultant grain size and shape, which is associated with mechanical properties, can also be predicted. Furthermore, the amount of strain and strain rate to form optimal adhesion can be evaluated.
Proceedings Papers
Dynamic Impact Wear Behavior of HVOF Sprayed Hardmetal Coatings
Available to Purchase
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 580-593, April 29–May 1, 2024,
Abstract
View Papertitled, Dynamic Impact Wear Behavior of HVOF Sprayed Hardmetal Coatings
View
PDF
for content titled, Dynamic Impact Wear Behavior of HVOF Sprayed Hardmetal Coatings
Thermally sprayed wear resistant coatings have proven their effectiveness in many applications. Their benefit is unquestionable in the case of mutual sliding contact or abrasive stress caused by hard particles. However, for the case of dynamic impact loading, either single or cyclic, the lifetime of different types of coatings is rarely described, probably due to the complex influence of many parameters. The paper deals with the evaluation of resistance to dynamic impact loading of two types of HVOF-sprayed Cr3C2-rich binary hardmetal coatings (Cr3C2-42%WC-16%Ni and Cr3C2-37%WC-18%NiCoCr) with respect to the variation of their deposition parameters and compares them to a well established Cr3C2-25%NiCr coating. For each coating, a Wohler-like curve was constructed based on a failure criterion of sudden increase in impact crater volume. Besides, coatings deposition rate, residual stress, microstructure and hardness were evaluated. Differences in the coatings dynamic impact wear resistance was found, related to their residual stress. The failure mechanism and crack propagation mode are analyzed using SEM of impact surface and cross-sections. Deformation and related stress changes in coated systems during dynamic impact loading are described using FEA analyzes.
Proceedings Papers
Influence of Surface Geometry and Microstructural Features on the Delamination and Crack Propagation of Brittle Convex Thermal Barrier Films during Thermal Cyclic Loading
Available to Purchase
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 1-8, May 22–25, 2023,
Abstract
View Papertitled, Influence of Surface Geometry and Microstructural Features on the Delamination and Crack Propagation of Brittle Convex Thermal Barrier Films during Thermal Cyclic Loading
View
PDF
for content titled, Influence of Surface Geometry and Microstructural Features on the Delamination and Crack Propagation of Brittle Convex Thermal Barrier Films during Thermal Cyclic Loading
The influence of air plasma sprayed alumina coating geometry, microstructure, interface roughness on its delamination and crack propagation resistance during low temperature thermal cycling, i.e. thermal mismatch stress, is investigated both numerically and experimentally. Previous studies on thermal cycling loading concentrate on flat, numerically designed locally curved specimens and/or mathematically modeled roughness without extension towards real coating morphology, which renders the conclusions less practically driven. Results show that arbitrarily oriented cracks originate predominantly near the coating/substrate interface and propagate along zones of high tensile and shear residual stress. The crack path deflection was attributed to the complex stress concentration structure resultant from the intricate microstructural porosity and coating general convex geometry. Microstructural features such as porosity increase the interfacial and coating tensile stress, which may lead to important delamination processes even during low temperature thermal cycling.
Proceedings Papers
Dynamic Impact Wear Analyses of Selected Cobalt Based HVOF Sprayed Coatings
Available to Purchase
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 729-735, May 4–6, 2022,
Abstract
View Papertitled, Dynamic Impact Wear Analyses of Selected Cobalt Based HVOF Sprayed Coatings
View
PDF
for content titled, Dynamic Impact Wear Analyses of Selected Cobalt Based HVOF Sprayed Coatings
Impact testing appears as a most promising tool for gaining information on coating behavior in load-bearing applications. During dynamic impact test an indenter impacts successively the surface of the coating with constant force and frequency. The deformation of the coated specimen during impact testing is affected by the mechanical properties of both the substrate and the coating. Varying the impact load and the number of impacts, the evolution of coating surface deformation and contact fatigue failures can be observed. In the paper, the influence of dynamic impact load and number of impacts on the resulting impact crater volume and morphology is analysed, and the interpretation of the results in form of Wohler-like dependance is suggested and demonstrated on two types of HVOF sprayed Co-based alloy coatings. The low-number impact craters evolution and subsurface cracks propagation of HVOF sprayed Co-based alloy coatings is analyzed in more detail, by means of 3D optical microscopy and SEM. The results showed, that the higher ability to deform plastically increased the coatings dynamic impact fatigue lifetime. The cracks, responsible for coatings destruction, spread predominantly along the intersplat boundaries in the pile-up area.
Proceedings Papers
Influence of Bondcoat Topography on the Properties of Suspension Sprayed YSZ Thermal Barrier Coatings
Available to Purchase
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 9-17, May 24–28, 2021,
Abstract
View Papertitled, Influence of Bondcoat Topography on the Properties of Suspension Sprayed YSZ Thermal Barrier Coatings
View
PDF
for content titled, Influence of Bondcoat Topography on the Properties of Suspension Sprayed YSZ Thermal Barrier Coatings
Intensive R&D work of more than one decade has demonstrated many unique coating properties, particularly for oxide ceramic coatings fabricated by suspension thermal spraying technology. Suspension spraying allows producing yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBC) with columnar microstructure, similar to those produced by electron-beam physical vapor deposition (EB-PVD), and vertically cracked morphologies, with a generally low thermal conductivity. Therefore, suspension sprayed YSZ TBCs are seen as an alternative to EB-PVD coatings and those produced by conventional air plasma spray (APS) processes. Nonetheless, the microstructure of the YSZ topcoat is strongly influenced by the properties of the metallic bondcoat. In this work, direct laser interference patterning (DLIP) was applied to texture the surface topography of Ni-alloy based plasma sprayed bondcoat. Suspension plasma spraying (SPS) was applied to produce YSZ coatings on top of as-sprayed and laser-patterned bondcoat. The samples were characterized in terms of microstructure, phase composition and thermal cycling performance. The influence of the bondcoat topography on the properties of suspension sprayed YSZ coatings is presented and discussed.
Proceedings Papers
High-Temperature Performance of Self-Healing SiC-YSZ Thermal Barrier Coatings Deposited by Using Various Plasma Spray Concepts
Available to Purchase
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 18-22, May 24–28, 2021,
Abstract
View Papertitled, High-Temperature Performance of Self-Healing SiC-YSZ Thermal Barrier Coatings Deposited by Using Various Plasma Spray Concepts
View
PDF
for content titled, High-Temperature Performance of Self-Healing SiC-YSZ Thermal Barrier Coatings Deposited by Using Various Plasma Spray Concepts
In this study, a novel self-healing concept is considered in order to increase the lifetime of thermal barrier coatings (TBCs) in modern gas turbines. For that purpose, SiC healing particles were introduced to conventional 8YSZ topcoats by using various plasma spray concepts, i.e., composite or multilayered coatings. All topcoats were sprayed by SG-100 plasma torch on previously deposited NiCrAlY bondcoats produced by conventional atmospheric plasma spraying. Coatings were subjected to thermal conductivity measurements by laser flash method up to 1000°C, isothermal oxidation testing up to 200h at 1100°C and finally thermal cyclic fatigue (TCF) lifetime testing at 1100°C. Microstructural coating evaluation was performed by scanning electronic microscope (SEM), in the as-produced and post high-temperature tested states. This was done to analyze the self-healing phenomena and its influence on the high-temperature performance of the newly developed TBCs.
Proceedings Papers
Using a DOE Approach to Optimize a LVPS Bond Coat and APS Top Coat for TBC Systems
Available to Purchase
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 60-65, May 24–28, 2021,
Abstract
View Papertitled, Using a DOE Approach to Optimize a LVPS Bond Coat and APS Top Coat for TBC Systems
View
PDF
for content titled, Using a DOE Approach to Optimize a LVPS Bond Coat and APS Top Coat for TBC Systems
Acquisition of a new LVPS and APS coating system at Delta Air Lines necessitated optimization of the coating parameters on both systems, especially for application of bond coat (LVPS) and top coat (APS) for a TBC coating system. To expedite the coating optimization, it was determined that a design of experiments (DOE) approach would best enable the establishment of the operating window for the two systems. Samples prepared were primarily evaluated for their performance while exposed to a cyclic oxidation cycle. Samples were also evaluated for the microstructure and composition using energy dispersive spectroscopy (EDS) analysis. Samples from the ceramic coating DOE were also evaluated for their erosion characteristics. Results indicate a low correlation between the individual bond coat parameters evaluated to the furnace cycle life. However, the top coat spray parameters were found to have a greater correlation to furnace cycle life and erosion performance.
Proceedings Papers
Principle and Practice to Achieve Improvements in TBC Thermal Cycle Lifetime
Available to Purchase
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 66-74, May 24–28, 2021,
Abstract
View Papertitled, Principle and Practice to Achieve Improvements in TBC Thermal Cycle Lifetime
View
PDF
for content titled, Principle and Practice to Achieve Improvements in TBC Thermal Cycle Lifetime
As a critical technology, thermal barrier coatings (TBC) have been used in both aero engines and industrial gas turbines for a few decades, however, the most commonly used MCrAlY bond coats which control air plasma sprayed (APS) TBC lifetime are still deposited by the powders developed in 1980s. This motivates a reconsideration of development of MCrAlY at a fundamental level to understand why the huge efforts in the past three decades has so little impact on industrial application of MCrAlY alloys. Detailed examination of crack trajectories of thermally cycled samples and statistic image analyses of fracture surface of APS TBCs confirmed that APS TBCs predominately fails in top coat. Cracks initiate and propagate along splat boundaries next to interface area. TBC lifetime can be increased by either increasing top coat fracture strength (strain tolerance) or reducing the tensile stress in top coat or both. By focusing on the reduction of tensile stress in top coats, three new bond coat alloys have been designed and developed, and the significant progress in TBC lifetime have been achieved by using new alloys. Extremely high thermal cycle lifetime is attributed to the unique properties of new alloys, such as remarkably lower coefficient of thermal expansion (CTE) and weight fraction of β phase, absence of mixed / spinel oxides, and TGO self repair ability, which cannot be achieved by the existed MCrAlY alloys.
Proceedings Papers
3D Microstructure-Based FE Simulation of Cold-Sprayed Al-Al 2 O 3 Composite Coatings under Indentation and Quasi-Static Compression
Available to Purchase
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 386-395, May 24–28, 2021,
Abstract
View Papertitled, 3D Microstructure-Based FE Simulation of Cold-Sprayed Al-Al 2 O 3 Composite Coatings under Indentation and Quasi-Static Compression
View
PDF
for content titled, 3D Microstructure-Based FE Simulation of Cold-Sprayed Al-Al 2 O 3 Composite Coatings under Indentation and Quasi-Static Compression
This study developed microstructure-based finite element (FE) models to investigate the behavior of cold-sprayed aluminum-alumina (Al-Al2O3) metal matrix composite (MMCs) coatings subject to indentation and quasi-static compression. Based on microstructural features (i.e., particle weight fraction, particle size, and porosity) of the MMC coatings, representative volume elements (RVEs) were generated by using Digimat software and then imported into ABAQUS/Explicit. State-of-the-art physics-based modelling approaches were incorporated into the model to account for particle cracking, interface debonding, and ductile failure of the matrix. This allowed for analysis and informing on the deformation and failure responses. The model was validated with experimental results for cold-sprayed Al-18 wt.% Al2O3, Al-34 wt.% Al2O3, and Al-46 wt.% Al2O3 metal matrix composite coatings under quasi-static compression by comparing the stress versus strain histories and observed failure mechanisms (e.g., matrix ductile failure). The results showed that the computational framework is able to capture the response of this cold-sprayed material system under compression and indentation, both qualitatively and quantitatively. The outcomes of this work have implications for extending the model to materials design and under different types of loading (e.g., erosion and fatigue).
Proceedings Papers
Cold Spray Process to Mitigate Potential Stress-Corrosion Cracking in Used Nuclear Fuel Storage Canisters
Available to Purchase
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 623-626, May 24–28, 2021,
Abstract
View Papertitled, Cold Spray Process to Mitigate Potential Stress-Corrosion Cracking in Used Nuclear Fuel Storage Canisters
View
PDF
for content titled, Cold Spray Process to Mitigate Potential Stress-Corrosion Cracking in Used Nuclear Fuel Storage Canisters
Cold spray deposition is being investigated for mitigation of chloride-induced stress corrosion cracking (CISCC) in dry cask storage systems (DCSS) for spent nuclear fuel. Welded regions of austenitic stainless-steel canisters in DCSS are under tensile stress and susceptible to environmental chloride corrosion, which can potentially lead to the formation of CISCC. The low thermal input and high throughput nature of cold spraying make it a viable repair and mitigation option for managing potential CISCC. Cold spray coatings are under compressive stress and act as a barrier in Cl-rich environments. Characterization data including microstructure, hardness, and corrosion resistance are presented for cold spray coatings on stainless steel substrates.
Proceedings Papers
Thermal Cyclic Life of Functionally-Graded Gadolinium Zirconate/Yttria Stabilized Zirconia Thermal Barrier Coating
Available to Purchase
ITSC 2018, Thermal Spray 2018: Proceedings from the International Thermal Spray Conference, 35-41, May 7–10, 2018,
Abstract
View Papertitled, Thermal Cyclic Life of Functionally-Graded Gadolinium Zirconate/Yttria Stabilized Zirconia Thermal Barrier Coating
View
PDF
for content titled, Thermal Cyclic Life of Functionally-Graded Gadolinium Zirconate/Yttria Stabilized Zirconia Thermal Barrier Coating
In this study, two types of thermal barrier coatings (TBC); duplex and functionally graded coatings were deposited on superalloy Nimonic 263 substrates using air plasma spray process. The duplex coating consists of YSZ top coat and NiCrAlY bond coat. The functionally graded coating consists of five layers with GZ as top layer, GZ+YSZ and YSZ+NiCrAlY as intermediate layers. The TBC samples were subjected to isothermal heat treatment at 1100 °C for 100 hours before undergoing thermal cyclic tests at 1200 °C up to 20% spallation to evaluate the oxidation and thermal fatigue resistance of the coatings. Results indicate that the functionally graded GZ TBC has a better cyclic life than the duplex YSZ TBC after isothermal heat treatment. The isothermal heat treatment also improved the thermal cyclic lifetime of the functionally graded GZ TBC by more than threefold in comparison to the as-sprayed GZ TBC.
Proceedings Papers
Fatigue Crack Growth in Plasma Sprayed Refractory Materials
Available to Purchase
ITSC 2018, Thermal Spray 2018: Proceedings from the International Thermal Spray Conference, 140-147, May 7–10, 2018,
Abstract
View Papertitled, Fatigue Crack Growth in Plasma Sprayed Refractory Materials
View
PDF
for content titled, Fatigue Crack Growth in Plasma Sprayed Refractory Materials
Fatigue crack growth in self-standing plasma sprayed tungsten and molybdenum beams with artificially introduced notches subjected to pure bending was studied. Beams width, thickness and length was 4 mm, 3 mm and 32 mm respectively. Fatigue crack length was measured using the differential compliance method and fatigue crack growth rate was established as a function of stress intensity factor. Unusual crack opening under compressive loading part of the cycle was detected. Fractographic analysis revealed the respective crack formation mechanisms. At low crack propagation rates, the fatigue crack growth takes place by intergranular splat fracture and splat decohesion for Mo coating. In W coating, intergranular splat fracture and void interconnection formed the fatigue crack. Frequently, the crack deflected from the notch plane being attracted to stress concentrators formed by porosity. At higher values of the stress intensity factor, the splat intergranular cracking become more common and the crack propagated more perpendicularly to the specimen surface.
Proceedings Papers
In Situ Acoustic Monitoring of Thermal Spray Process Using High-Frequency Impulse Measurements
Available to Purchase
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 72-78, June 7–9, 2017,
Abstract
View Papertitled, In Situ Acoustic Monitoring of Thermal Spray Process Using High-Frequency Impulse Measurements
View
PDF
for content titled, In Situ Acoustic Monitoring of Thermal Spray Process Using High-Frequency Impulse Measurements
In order to guarantee their protective function, thermal sprayings must be free from cracks, which expose the substrate surface to e.g. corrosive media. Cracks in thermal sprayings are usually formed because of tensile residual stresses. Most commonly, the crack occurrence is determined after the thermal spraying process by examination of metallographic cross-sections of the coating. Recent efforts focus on in situ monitoring of crack formation by means of acoustic emission analysis. However, the acoustic signals related to crack propagation can be absorbed by the noise of the thermal spraying process. In this work, a high-frequency impulse measurement technique was applied to separate different acoustic sources by visualizing the characteristic signal of crack formation via quasi-real-time Fourier analysis. The investigations were carried out on a twin wire arc spraying process, utilizing FeCrBSi as a coating material. The impact of the process parameters on the acoustic emission spectrum was studied. Acoustic emission analysis enables to obtain global and integral information on the formed cracks. The coating morphology as well as coating defects were inspected using light microscopy on metallographic cross-sections. Additionally, the resulting crack patterns were imaged in 3D by means of X-ray micro-tomography.
Proceedings Papers
Evaluation of Low-Pressure Cold Spray MMC Coatings by Acoustic Emission-Coupled Four-Point Flexural Testing
Available to Purchase
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 985-990, June 7–9, 2017,
Abstract
View Papertitled, Evaluation of Low-Pressure Cold Spray MMC Coatings by Acoustic Emission-Coupled Four-Point Flexural Testing
View
PDF
for content titled, Evaluation of Low-Pressure Cold Spray MMC Coatings by Acoustic Emission-Coupled Four-Point Flexural Testing
Low-pressure cold spray has been used as an innovative method to deposit metal matrix composite (MMC) coatings: boron carbide-nickel (B4C-Ni) and tungsten carbide-cobalt-nickel (WC-Co-Ni) composites. The coatings were studied using scanning electron microscopy, X-ray diffraction with Rietveld refinement, and acoustic emission-coupled four-point flexural test. Indentation fracture toughness tests were performed on the WC-Co-Ni coatings, only. The results showed that the composites had reinforcing particle volume fractions of 45.8 ± 0.3 vol.% and 22.7 ± 0.1 vol.% for the WC-Co-Ni and B4C-Ni MMC coatings, respectively. Flexural tests were used to evaluate the fracture strain of the composites. In these tests, the WC-Co-Ni composite failed by brittle facture at approximately 0.5% nominal strain. The B4C-Ni composite showed flexural behaviour similar to that of an unreinforced Ni matrix. These results suggest that there was insufficient B4C within the coating to affect significantly the ductile failure mode of Ni matrix. Post bending fracture analysis showed the presence of straight, continuous cracks on the WC-Co-Ni surface and the indentation fracture toughness of WC-Co-Ni was found to be 1.2 ± 0.2 MPa·m0.5. Discontinuous, random cracks were observed on the B4C-Ni surface. The quantification of these properties is essential in evaluating the performance of the low-pressure cold sprayings to determine their potential applications.
1