Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-4 of 4
Marine biofouling
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 454-460, May 24–28, 2021,
Abstract
View Paper
PDF
Biofouling has been persisting as a worldwide problem due to the difficulties in finding efficient environment-friendly antifouling coatings for long-term applications. Developing novel coatings with desired antifouling properties has been one of the research goals for surface coating community. Recently hydrogel coating was proposed to serve as antifouling layer, for it offers the advantages of the ease of incorporating green biocides, and resisting attachment of microorganisms by its soft surface. Yet poor adhesion of the hydrogel on steel surfaces is a big concern. In this study, porous matrix aluminum coatings were fabricated by cored wire arc spray, and the sizes of the pores in the aluminum (Al) coatings were controlled by altering the size of the cored powder of sodium chloride. Silicone hydrogel was further deposited on the porous coating. The hydrogel penetrated into the open pores of the porous Al coatings, and the porous Al structure significantly enhanced the adhesion of the hydrogel. In addition, hydrogel coating exhibited very encouraging antifouling properties.
Proceedings Papers
ITSC 2018, Thermal Spray 2018: Proceedings from the International Thermal Spray Conference, 732-735, May 7–10, 2018,
Abstract
View Paper
PDF
Marine biofouling has emerged as worldwide serious problems for artificial marine infrastructures. Among the measures taken so far to solve such problems, construction of an antifouling layer has been proven to be effective in offering long-term antifouling performances. Antifouling based on the use of biocides is the most important method in modern maritime industries. While tributyltin (TBT)-based self-polishing coatings are being replaced by other biocide-releasing coatings, the environmental toxicity of these compounds is also under scrutiny. Therefore, there is a significant interest in developing non-toxic technologies. Green biocides can also be extracted from many types of organisms including terrestrial plants, sea creatures and bacteria. In this study, flame sprayed polyethylene (PE)-capsaicin composite coatings were developed for marine antifouling applications. Capsaicin powder were fixed by polymer-based substrate and distributed evenly. Antifouling test indicated excellent antibacterial properties of PE-capsaicin composite coatings against adhesion of marine Bacillus sp. bacteria. Prohibited formation of biofilm on the surfaces of the thermal sprayed composite coatings gives clear insight into their potential applications as antifouling layers in the marine environment.
Proceedings Papers
ITSC2016, Thermal Spray 2016: Proceedings from the International Thermal Spray Conference, 1064-1068, May 10–12, 2016,
Abstract
View Paper
PDF
This paper describes the fabrication of corrosion-resistant HDPE coatings with antifouling properties achieved through the dispersion of Cu particles. The main feedstock powder was prepared by coating HDPE particles with a 1 μm thick Cu shell via electroless plating. The coated particles were flame sprayed as a topcoat over HDPE and Cu layers that had been deposited on mild steel substrates. SEM, EDS, and XRD analysis was used to examine the coatings and feedstock powders. After neutral salt spray testing for 14 days, the HDPE-Cu coatings were found to be relatively intact. Coating samples of various types were also immersed in bacteria-containing artificial seawater for three days. Field-emission SEM showed that the attachment of Bacillus sp., which successfully colonized on HDPE surfaces, was significantly constrained on pure copper and HDPE-Cu composite coatings. Some of the proposed theories on how Cu ions inhibit the formation of biofilms are discussed.
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 1041-1044, May 4–7, 2009,
Abstract
View Paper
PDF
In this investigation, aluminum-copper, aluminum-zinc, and zinc coatings were flame sprayed onto a sand-blasted mild steel substrate. The coatings were immersed in seawater and were examined on a monthly basis using EDS and XRD analysis to assess corrosion and marine fouling behaviors. The spraying and test procedures are described and the results are presented and discussed. Zinc and aluminum-zinc coatings with high zinc content proved to have good anti-corrosion and anti-fouling properties, but the aluminum-copper coatings did not.