Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Fuel ash corrosion
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 691-694, May 4–7, 2009,
Abstract
View Paper
PDF
This study evaluates Fe-Si intermetallic powders as an alternative to powders currently used to coat furnace walls in pulverized coal fired boilers. The developed powder mainly consists of Fe 2 Si, which has a relatively low melting point among iron silicides. The powders were deposited on CrMo steel substrates by HVOF and atmospheric plasma spraying and the resulting coatings were subjected to corrosion and erosion testing. Under conditions simulating the operating environment in a low NO X boiler, the HVOF sprayed Fe-Si coatings exhibited sulfidation resistance nearly equal to that of Cr-Ni layers, and in high-temperature erosion tests, the APS intermetallic coatings with boron additions were found to be more erosion resistant than conventional Cr 3 C 2 -NiCr coatings.
Proceedings Papers
ITSC1998, Thermal Spray 1998: Proceedings from the International Thermal Spray Conference, 151-155, May 25–29, 1998,
Abstract
View Paper
PDF
The elevated temperature erosion resistance of experimental amorphous thermal spray coatings was determined in a laboratory elevated temperature erosion tester. Test conditions attempted to simulate the erosion conditions found at the combustor waterwall tubes in fossil fuel fired boilers. Erosion tests were conducted on four experimental amorphous thermal spray coatings, using the bed ash retrieved from an operating coal fired boiler. An experimental arcspray process was used to spray coatings. These results were compared with erosion test results of two common structural materials, two commercially available arc-sprayed coatings, and a proprietary HVOF coating. Test results indicated that the Duocor coating had the highest erosion resistance among the four experimental coatings, it showed equal resistance to the HVOF coating (DS-200). Compared to AISI 1018 steel, both Duocor and DS-200 coatings reduced material wastage by 26-fold. Other test results indicated that the XJ-16, 60T and Armacor M coatings had equal erosion resistance reducing material wastage approximately 7-fold, while Armacor CW reduced by 10-fold. Only slightly better than the unprotected 1018 steel, the X-20 coating performed poorly on erosion tests. The high erosion resistance of Duocor and DS-200 coatings was attributed to their high densities and fine splat structures.