Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Body-centered cubic
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 567-573, May 22–25, 2023,
Abstract
View Paper
PDF
Material’s tensile strength can be improved by the presence of a body-centered cubic (BCC) phase, which is essential in highstrength applications and highly corrosive environments. Thus, synthesizing a BCC single-phase, equiatomic AlCoCrFeNi high-entropy alloy (HEA) feedstock particle using a highenergy mechanical alloying (HE-MA) method was investigated. The transient alloy particles were developed using a planetary mill at a constant rotational speed of 580 rpm employing milling times in the range of 4 to 24 hours. During the process, stearic acid of 3 wt.% of the precursor composition was used as a process-controlling agent (PCA). Two HE-MA manufacturing regimes were utilized: i) conventional (milling constituent elements simultaneously), and ii) sequential (progressive milling while adding elements in a certain order). In addition to the conventional method, a sequential regime was employed to develop FeNiCoCrAl, wherein individual elements were added every 4 hours to the starting/milled Fe + Ni mixture. Based on the results, the HE-MA FeNiCoCrAl showed a BCC single-phase formation after 24 hours, with no intermetallic or contamination traceability. Finally, a nanoindentation hardness measurement was carried out to support the observed phase transformation before and after the HE-MA process.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 416-421, May 24–28, 2021,
Abstract
View Paper
PDF
High-entropy alloys (HEAs) represent an innovative development approach for new alloy systems. These materials have been found to yield promising properties, such as high strength in combination with sufficient ductility as well as high wear and corrosion resistance. Especially for alloys with a body-centered cubic (bcc) structure, advantageous surface properties have been revealed. However, typical HEA systems contain high contents of expensive or scarce elements. Consequently, applying them as coatings where their use is limited to the surface represents an exciting pathway enabling economical exploitation of their superior properties. Nevertheless, processing conditions strongly influence the resulting microstructure and phase formation, which in turn has a considerable effect on the functional properties of HEAs. In the presented study, microstructural differences between high-velocity oxygen fuel (HVOF) and high-velocity air fuel (HVAF) sprayed coatings of the alloy AlCrFeCoNi are investigated. A metastable bcc structure is formed in both coating processes. Precipitation reactions are suppressed by the rapid solidification during atomization and by the relatively low thermal input during spraying. The coating resistance to corrosive media was investigated in detail, and an improved passivation behavior was observed in the HVAF coatings.