Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Date
Availability
1-2 of 2
Renewable Energies and Storage
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 597-603, May 22–25, 2023,
Abstract
View Paper
PDF
Battery manufacturing involves a large number of individual cells arranged in modules configured within a battery pack and connected either in series and/or parallel to deliver the required power and driving range. Cells within a module are linked using a tab-to-busbar connection as the electrical interconnect. Therefore, a battery pack contains a plurality of tab-to-busbar joints, and each must provide low electrical resistivity connection to minimize losses that may reduce the effective performance of the battery. In this work, the Dual Flow Cold Spray (DFCS) process, a modification of low-pressure cold spraying, was used to form low resistivity Cu+10%Zn and Al+10% Zn tab-to-busbar interconnects. As test coupons, 0.8 mm thick copper (Cu) was used to represent the busbar while 0.3 mm thick aluminum and nickel coated copper foils represented the respective electrode tabs. Low resistivity joint interconnects (≈100 μΩ) with high adhesion strength (≈120 MPa) have been formed. The influence of busbar surface preprocessing on the resistivity of the tab-to-busbar joints has been studied.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 604-609, May 22–25, 2023,
Abstract
View Paper
PDF
The previous results have shown that dense bismuth oxidebased electrolytes can be fabricated simply by plasma spraying owing to their low melting point. In this study, the Bi 2 O 3 – Er 2 O 3 –WO 3 electrolyte of high ionic conductivity was deposited by the cost-effective plasma spraying to assemble the SOFC for examining its electrochemical performance. The SOFC cell consisted of FeCr 24.5 metal support, NiO-YSZ anode, 10 mol% scandium oxide-stabilized zirconium oxide (ScSZ) electrolyte, (Bi 2 O 3 ) 0.705 (Er 2 O 3 ) 0.245 (WO 3 ) 0.05 (EWSB) electrolyte, and La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 (LSCF) cathode. The ScSZ electrolyte interlayer was introduced between the anode and EWSB electrolyte to hinder the reduction of EWSB in the anode environment. NiO-YSZ, ScSZ, EWSB, and LSCF were deposited by plasma spraying on the metal support which was prepared by a press-forming-sintering process. The NiO-YSZ/ ScSZ/ EWSB/ LSCF single cell assembled with the as-sprayed ScSZ presented an open circuit potential of 0.90V at 600 °C and the maximum power density of 1130 mW cm -2 at 750 °C, 450 mW cm -2 at 650 °C, and 128 mW cm -2 at 550 °C. The plasma sprayed ScSZ electrolyte was then densified through impregnating using yttrium and zirconium nitrate solutions followed by annealing treatment. The single cell assembled with the densified ScSZ presented an open circuit potential up to 1.004V at 600 °C and the maximum power density of 1356 mW cm -2 at 750 °C, 619 mW cm -2 at 650 °C, and 163 mW cm -2 at 550 °C. The performance of the cell was significantly improved by the post-spray densification treatment of the ScSZ electrolyte. The present result shows that the high performance NiO-YSZ/ScSZ/EWSB/LSCF cell at intermediate temperatures can be successfully fabricated by plasma spraying.