Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Date
Availability
1-4 of 4
Poster Session: HVOF, Cold, and Kinetic Spraying
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 768-773, May 3–5, 2010,
Abstract
View Paper
PDF
Cold spray is a material deposition process that uses a high pressure, high velocity gas jet for the deformation and bonding of particles. However, deposition of brittle or hard materials such as ceramics has not been successful: unless they are co-deposited with a ductile matrix material. This paper examines the WC particle size and its influence on the deposition of Co-based cermets. Micro- and nano-structured powders with similar Co content were employed. Varying the WC particle size influenced significantly the deposition efficiency of the coating process. Micrometer-structured WC-Co feedstocks did not permit coating build up when processed under comparable or elevated thermal spray parameters used for the nanostructured WC-Co feedstocks. In addition, micrometer-structured WC-Co coatings exhibited a conjoint erosion and deposition effect on the surface. Fine WC particles (<1 μm) were observed near to the substrate interface and larger WC particles (1-2 μm) in the vicinity of the coating surface. These observations indicate the existence of a critical WC particle size for deposition by the cold spray method and that the size criteria arises due to the formation and cohesion mechanisms within the coating layer.
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 774-779, May 3–5, 2010,
Abstract
View Paper
PDF
To fully understand particle interactions with both substrate and neighboring particles, Finite Element Analysis (FEM) of particle agglomeration impact onto substrate was developed. To investigate particle/particle bonding mechanism, two dimensional models for various initial densities of deposited stainless steel particles has been built. In the model the stainless steel powder was deposited onto copper substrate. The results obtained from simulations show the influence of particle agglomeration density on stress and strain state. Both plastic strains, stresses and dynamics of the process has been investigated. The model was verified and compared with metallographic structures of real coatings.
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 780-785, May 3–5, 2010,
Abstract
View Paper
PDF
Cu 54 Zr 22 Ti 18 Ni 6 amorphous powders were deposited onto aluminum substrates by cold spray process with different powder preheating temperature (below T g : 623K, near T g : 703K, and T x : 773K). The microstructure and macroscopic properties of coating layers were investigated using OM, XRD, DSC and hardness, SUGA test, potentio-dynamic corrosion test. XRD results showed that cold sprayed Cu based amorphous coating layers of 300~350 μm thickness could be well manufactured regardless of powder preheating temperature. Porosity measurements revealed that the coating layers of 623K and 773K preheating temperature conditions had lower porosity contents (0.88%, 0.93%) than that of 623K preheating conditions (4.87%). Hardness was measured as 374.8HV (623K), 436.3HV (703K) and 455.4HV (773K) for the coating layers, respectively. Results from the wear resistance examination via SUGA test and those from the hardness testing showed the same trends. Examination of corrosion resistance of the amorphous coating layer showed that the critical anodic current density (ic) of the coating layer, for which powder preheating was provided at 623K and then cold spray deposition, was 5.6X10-3A/cm 2 . The ic values of the 703K and 773K coating layers were 4.8X10 -4 and 1.2X10 -3 A/cm 2 , respectively. Both temperature conditions were found to offer superior corrosion characteristics to those of the 623K-prehaeted and coated specimen. This was assumed to be attributed to the relatively lower level of porosity.
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 786-790, May 3–5, 2010,
Abstract
View Paper
PDF
Particle-at-impact parameters in Cold Spray are governed mostly by gas flow parameters. However, the location of the powder injection can be used as independent factor to modify particle-in-flight parameters. Calculations and experiments confirm strong influence of the location of the powder injection on dynamics of particle acceleration and heating. Application of this effect for cold spraying of multicomponent coatings is a new and promising approach. The general scheme of spraying of two-component mixture composed of hard-sprayable and easy-sprayable components proposed as follows: The hard-sprayable component is injected into the subsonic part of the nozzle at a gas stagnation temperature favorable for this material to start the coating formation alone. The zone of injection of the easy-sprayable component is determined in such a way that the particles of this material have, at the nozzle outlet, values of temperature and velocity sufficient for the coating formation at the selected gas stagnation temperature. New design of spraying nozzle for the above purposes is proposed and discussed.