Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Date
Availability
1-1 of 1
Poster Session: Flame Spraying Processes
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2016, Thermal Spray 2016: Proceedings from the International Thermal Spray Conference, 1064-1068, May 10–12, 2016,
Abstract
View Paper
PDF
This paper describes the fabrication of corrosion-resistant HDPE coatings with antifouling properties achieved through the dispersion of Cu particles. The main feedstock powder was prepared by coating HDPE particles with a 1 μm thick Cu shell via electroless plating. The coated particles were flame sprayed as a topcoat over HDPE and Cu layers that had been deposited on mild steel substrates. SEM, EDS, and XRD analysis was used to examine the coatings and feedstock powders. After neutral salt spray testing for 14 days, the HDPE-Cu coatings were found to be relatively intact. Coating samples of various types were also immersed in bacteria-containing artificial seawater for three days. Field-emission SEM showed that the attachment of Bacillus sp., which successfully colonized on HDPE surfaces, was significantly constrained on pure copper and HDPE-Cu composite coatings. Some of the proposed theories on how Cu ions inhibit the formation of biofilms are discussed.