Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Date
Availability
1-2 of 2
Porosity
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2000, Thermal Spray 2000: Proceedings from the International Thermal Spray Conference, 1057-1060, May 8–11, 2000,
Abstract
PDF
Thermal barrier coatings have been extensively used in several industrial segments. The material used as an insulator in such systems has been partially stabilized zirconia (PSZ) plasma sprayed over a metallic bond coat layer. The ceramic layer is usually porous, thus improving insulation properties. The porosity also increases gas permeability and, therefore, reduces oxidation resistance of the coating. Post-treatments have been applied to reduce the open porosity and improve oxidation resistance. In this work thermal barrier coatings were applied on low carbon steel substrates using two sets of bond coat, i.e., metallic and metal-ceramic. The metallic bond coat was NiCrAlY. The metal-ceramic bond coat was a mixture of NiCrAlY and 8% yttria partially stabilized zirconia, which were applied by simultaneous feeding to the plasma torch from two powder feeders. A sol-gel method was employed to impregnate the porous ceramic top coat with alumina or zirconia. The samples in the as-sprayed and post-treated condition were characterized using mercury intrusion porosimetry (MIP), thermal conductivity. KEY WORDS: Thermal Conductivity, TBCs, Sol-Gel.
Proceedings Papers
ITSC2000, Thermal Spray 2000: Proceedings from the International Thermal Spray Conference, 1061-1066, May 8–11, 2000,
Abstract
PDF
Thermal barrier coatings (TBCs) are used on heat engine parts to impart protection to components against failure under excessive heat loads, to increase inlet temperatures with consequent improvements in efficiency, and to reduce requirements for cooling. Control of thermal conductivity is addressed since low thermal conductivity depends not only on the nature of the yttria stabilized zirconia (YSZ) layer, but also on the morphology of pores and cracks, which are closely linked to process parameters. This paper will present the influence of feedstock characteristics (particle size distribution and powder morphology) and thermal cycling on porosity content and thermal conductivity of zirconia coatings. The results show increased porosity with particle size, due to an increase in the degree of particle fragmentation and unmelted particles, leading to lower thermal conductivity. Coatings sprayed with powders of different powder morphology yielded changes in porosity and interlamellar contact, thus, influenced thermal conductivity. Sintering effects during thermal cycling resulted in reduced porosity and increased thermal conductivity.