Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Date
Availability
1-20 of 45
Modeling and Simulation
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 130-140, May 4–6, 2022,
Abstract
View Paper
PDF
Previous work conducted on atmospheric plasma spraying has shown the importance of including the measured gun voltage in the modeling procedure to improve the outputs prediction quality. Given a set of controllable input parameters, the produced coating specifications are influenced by the gun voltage measured during the spraying process. As the gun voltage can only be measured once the coating process has started, making predictions about the expected voltage is necessary to better select the process inputs that produce a coating with desired specifications. We suggest that the gun voltage is related to the status of the manufacturing equipment. Exploiting voltage information, we propose a modeling and configuration procedure that uses Gaussian process regression and Kalman filtering to reduce the impact of session-to-session equipment changes as well as in-session equipment wearing. We then demonstrate this approach in simulation and experiments, using an industrial atmospheric plasma spraying set-up to produce YSZ coatings.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 141-159, May 4–6, 2022,
Abstract
View Paper
PDF
During the impact and solidification of thermal spray droplets on a substrate, the density increases when the droplet solidifies. Depending on the material, the changes in density could be significant. For example, aluminum oxide's density changes by 66%, while the changes are 12% and 19% for nickel and copper, respectively. For zirconia, this change is 24%. The effect of such densification on the dynamic of the droplet impact and the formation of porosity could be dramatic. In this study, the effect of shrinkage of a molten droplet during solidification on droplet impact is numerically investigated for several materials. Results for the impact of molten alumina, nickel, copper, and zirconia droplets on both smooth and rough surfaces are presented. The results of variable density cases are compared with those assuming constant density. The effect of thermal shrinkage is particularly vital in the interaction of two impacting droplets. The shrinkage promotes the formation of additional pores.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 160-163, May 4–6, 2022,
Abstract
View Paper
PDF
In the cold spray additive manufacturing (CSAM) process, layer-by-layer stacking is a good method to achieve coating AM. Different from AM processes such as selective laser cladding, which can quickly realize trajectory planning based on commercial software, the spraying trajectory of the CSAM process cannot be created easily due to the “one-stroke” character. The spray path cannot be intersected and the coating deposition cannot be interrupted during the spraying process. What’s more, the spray gun or the workpiece held by the robot usually needs to be deflected by a certain angle to compensate the coating edges. An accurate and efficient spraying trajectory for a given workpiece is the most basic and important part in CSAM process. This article proposes a novel parametric layered slicing algorithm for STL files and an optimized rapidly exploring random tree (RRT) algorithm, so as to generate spraying trajectory accurately and quickly, especially for a part with multiple features. The simulation results revealed that the algorithms can efficiently generate the corresponding spraying trajectory for CSAM.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 164-171, May 4–6, 2022,
Abstract
View Paper
PDF
High-velocity air-fuel (HVAF) is a combustion process that allows solid-state deposition of metallic particles with minimum oxidation and decomposition. Although HVAF and cold spray are similar in terms of solid-state particle deposition, slightly higher temperature of HVAF may allow further particle softening and in turn more particle deformation upon impact. The present study aims to produce dense Ti-6Al-4V coatings by utilizing an inner-diameter (ID) HVAF gun. The ID gun is considered a scaled-down version of the standard HVAF with a narrower jet, beneficial for near-net-shape manufacturing. To explore the potential of the ID gun in the solid-state deposition process, an investigation was made into the effect of spraying parameters (i.e., spraying distance, fuel pressure, and nozzle length) on the characteristics of in-flight particles and the attributes of the as-fabricated coating such as porosity, oxygen content, and hardness. Using online diagnostics to monitor temperature and velocity of in-flight Ti-6Al-4V particles is challenging due to exothermic oxidation reaction of fine particles, while larger particles are too cold to be detected from their thermal emission. However, DPV diagnostic system was successfully employed to differentiate the non-emitting solid particles from the burning ones. It was found that increasing air and fuel pressure of the ID-HVAF jet led to an increase of the velocity of the in-flight particles, and resulted in improved density and hardness of the as-sprayed samples. However, increasing the spraying distance had a negative effect on the density and hardness of the deposits. It was also observed that the phases of the Ti-6Al-4V deposits were altered by producing vanadium oxide due to the high temperature of the spray jet.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 172-178, May 4–6, 2022,
Abstract
View Paper
PDF
Cermet double carbide coatings (WC-Cr 3 C 2 -Ni) were HVOF sprayed onto magnesium substrate. The variable parameter was spray distance (320, 360 and 400 mm). The microstructure of the coatings has been characterized by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). Additional, porosity and residual stress have been estimated. Phase composition of WC-Cr 3 C 2 -Ni cermet coatings consists of hexagonal WC carbide, as well as the Cr 3 C 2 and Cr 7 C 3 carbides. For the longest spray distance, minor presence of WC 6 O 6 was detected, most likely as an effect of higher spraying distance, leading to partially oxidation of WC at powders particles boundaries. Comparing lattice parameters with model data it should be noted that no significant contribution of stress is present, due to minor changes in WC lattice parameters in comparison to ICDD data. It also should be noted that Cr 7 C 3 carbide in WC-Cr 3 C 2 -Ni coating has different lattice parameters than ICDD data what shows its reactive nature. In obtained results it is clearly seen, that residual stress have the lowest values for coating sprayed from the shorter distance. This tendency is visible for both, linear and shear stress. The crystallite sizes are also the smallest for the shorter spray distance. Such fine structure shows a tendency to good redistribute of the thermal stress in the sprayed coating and also on the coating-substrate interface.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 179-188, May 4–6, 2022,
Abstract
View Paper
PDF
Raising demands in industry lead to the request of different and better paper quality. New paper types like e.g., liquid food packaging (lfp) will replace former solutions like Tetrapak, magazine papers will be produced much cheaper on different machine designs. Since certain paper properties like roughness, printability, … still remain or step up in quality level. One machine component influencing the paper properties strongly is the calender with its extremely hard, coated roll surfaces. The hard metal coating on the calender rolls can determine the later paper quality significantly. The current work describes investigations on certain WC based HVOF coatings, which later will be in contact with the paper under high temperatures, extremely high load, and steam environment. Coating design from carbide particle size, metal matrix and other factors like apparent density and sintering grade were studied under real life influences. The various coating versions were compared in a slurry test using the same fines as added in the paper production process for increasing brightness and tear strength. Interesting results are discussed on technical, but also economical basis.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 364-368, May 4–6, 2022,
Abstract
View Paper
PDF
During the thermal cycling process in MCrAlY-YSZ thermal barrier coating system, stresses are produced at bondcoat (BC)-topcoat (TC) interface due to the mismatch of the thermal expansion coefficients of the two coating layers. The stresses at the interface are not a single value and can be affected by the coatings’ microstructure. In this paper, finite element (FE) modeling method was used to study the behavior of the stress distribution at the coatings’ interface. The influence of the pore structure in the ceramic TC and the micro bulge structure at the metal BC surface was investigated. The results showed that both structures can change the stress distribution. The pores played a “stone-in-river” role, which trapped higher stress around them and simultaneously reduced the size of the macro stress zones in TC. The micro bulges at the TC/BC interface also trapped high stresses which could cause more interaction between TC cracks and BC roughness.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 369-376, May 4–6, 2022,
Abstract
View Paper
PDF
Thermal spraying is a complex physical process consisting of three main sub-systems: flame/plume generation, powder/flame/plume interaction and coating build-up. While mathematical and CFD models provide valuable insight about the individual modules of a thermal spray process, it is very difficult to gain overall insight of the whole process and dependencies between different inputs and outputs using mathematical and CFD analysis, due to very complex and interconnected nature of the thermal spray process. In this work, a sophisticated experiment has been conducted to collect enough data for the sake of developing data-driven model of a plasma spray process. Metco 204 powder feedstock material and F4 gun have been used. An optimized number of data samples has been chosen by applying common industrial input parameters in the experiment. The developed neural network model is able to predict the coating quality parameters with acceptable average accuracy of above 90% on test data by considering all relevant measurement error deviations of the process analysis methods. A sophisticated user-interface has been developed to enable the use of the model for coating parameter development as well as the designing recipe for target coating characteristics. The developed model can be used for different purposes: parameter development, off-line coating quality control, and eventually adaptive coating control.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 377-382, May 4–6, 2022,
Abstract
View Paper
PDF
In plasma spraying, compared to other thermal spraying process variants, only a small part of the available energy is used to build up a coating. Another peculiarity of this process is the relatively strong oxidation of the sprayed metallic particles, caused by the high temperatures and turbulent flow of the plasma jet in combination with the ambient air. A promising solution for increasing energy efficiency is a solid shroud that surrounds the plasma jet and thus prevents air entrainments from mixing with the plasma gas. The primary goal of this study is to develop a numerical model to investigate the effect of an external fixed nozzle extension on the plasma jet as a shroud. To this end, the existing simulation models of the plasma jet from the previous works of the authors were extended to model a solid nozzle extension at the outlet of a three-arc plasma generator. Furthermore, the length and diameter of the nozzle extension were parametrized to investigate their effects on the plasma temperature and the turbulence of the flow. This model can be used to optimize the geometry of the nozzle extension based on experimental measurements to adapt it to the flow conditions of the plasma jet. The results revealed that the plasma temperature could be increased using the nozzle extension, thereby raising the energy efficiency to melt the particles in plasma spraying.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 383-388, May 4–6, 2022,
Abstract
View Paper
PDF
Thermal spray technology keeps attracting several industries in both the manufacturing and repair sectors, thanks to its practicability and its reasonable processing time. Moreover, different kinds of materials can be successfully deposited to form coatings with potential excellent thermo-electro-mechanical properties. The resultant coating microstructure is completely different from the wrought powder material before the deposition process. In the case of metallic materials, the thermomechanical characteristics are quite dependent on the deposition conditions monitored from the spraying setup. One can mention gas temperature, impact velocity and angle, material combination, surface state, particles size, etc. Hence, one major factor which influences the final coating microstructural state is kinetic energy. In fact, in such processes where high velocity deposition is observed, intense grain refinement and sharp increase of the dislocation density are an outcome that is tightly related to high temperature and severe plastic deformation. Prediction of the mechanical properties of the produced coating is usually carried out using phenomenological models that describe very well the relationship between stress and strain under different conditions of temperature and strain rates. Most of these models fail, however, to describe the effect of the deformation mechanisms observed at ultra-high strain rates such as the viscous drag regime of dislocations or further the weak shock load regime, scenarios commonly observed in such processes. In the present paper, we present an enhanced physics-based model to describe the stress strengthening of metals upon impact and associated microstructure changes. We show that the model can accurately represent the desired effect of the dislocation drag. Modelling of the impact of a single copper particle onto a copper substrate is carried out to show the capability of the model to predict grain refinement and dislocation network modification.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 389-394, May 4–6, 2022,
Abstract
View Paper
PDF
In cold spray (CS) additive manufacturing process, micrometer scale particles accelerated through a supersonic nozzle are targeted on a surface with velocities in the rage of 300-1500 m/s in solid state. The impact energy of the particles leads them to deform plastically with high shear energy near the impact interface and adhere to the surface metallurgically, mechanically, and chemically. Using CS, deposition of metals, metal matrix composites, and polymers are achieved with high adhesive/cohesive strength and low porosity. Sensitivity of the CS additive manufacturing process to the variabilities in the process parameters are still being understood. Among the process parameters, particle morphology can have significant implications on drag forces, and therefore, on the particle impact velocity. This in turn affects the deposition efficiency (DE) and the quality of products. In this work, a new approach is introduced for computing DE by incorporating particle sphericity and its variation into one-dimensional numerical models. Size, sphericity, and the variability of size and sphericity of aluminum, copper, titanium, and tantalum particles are measured from static optical microscope images. The data is used for predicting impact velocity, temperature, and DE. The model results are then compared with particle velocity measurements.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 395-412, May 4–6, 2022,
Abstract
View Paper
PDF
In a DC plasma spray torch, the plasma-forming gas is the most intensively heated and accelerated at the cathode arc attachment due to the very high electric current density at this location. A proper prediction of the cathode arc attachment is, therefore, essential for understanding the plasma jet formation and cathode operation. However, numerical studies of the cathode arc attachment mostly deal with transferred arcs or conventional plasma torches with tapered cathodes. In this study, a 3-D time-dependent and two-temperature model of electric arc combined with a cathode sheath model is applied to the commercial cascaded-anode plasma torch SinplexPro. The model is used to investigate the effect of the cathode sheath model and bidirectional cathode-plasma coupling on the predicted cathode arc attachment and plasma flow. The model of the plasma-cathode interface takes into account the non-equilibrium spacecharge sheath to establish the thermal and electric current balance at the interface. The radial profiles of cathode sheath parameters (voltage drop, electron temperature at the interface, Schottky reduction of the work function) were computed on the surface of the cathode tip and used at the cathode-plasma interface in the model of plasma torch operation. The latter is developed in the open-source CFD software Code_Saturne. It makes it possible to calculate the flow fields inside and outside the plasma torch as well as the enthalpy and electromagnetic fields in the gas phase and electrodes. This study shows that the cathode sheath model results in a higher constriction of the cathode arc attachment, more plausible cathode surface temperature distribution, more reliable prediction of the torch voltage, cooling loss, and more consistent thermal balance in the torch.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 984-989, May 4–6, 2022,
Abstract
View Paper
PDF
A computational fluid dynamics model for understanding the HVAF process and the influence of the process parameters on the particle flight properties is investigated. Achieving this objective involves a novel approach to modeling the HVAF process with pressure inlet boundary conditions and integration of the mixing chamber. The study comprises the prediction of the flow fields described by a set of equations consisting of continuity, momentum, energy, and species transport. These equations are then solved with realizable k-ε turbulence model, a two-step chemistry model and eddy dissipation model to simulate the combustion reaction. Consequently, the interaction between the CoNiCrAlY alloy particles and the flow is modeled using a Lagrangian approach considering the forces acting on the particles and the heat transfer. The results show that the combustion chamber pressure is mainly affected by the compressed air and propane parameters. Furthermore, the flight behavior of the smaller particles is significantly influenced by the gas flow, while the larger particles tend to maintain their momentum and energy. Through the simulation model, an in-depth process understanding of the HVAF process can be achieved. More importantly, the model can be used as a tool for efficient process development.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 990-999, May 4–6, 2022,
Abstract
View Paper
PDF
Cold spray is a well-established thermal spray process for metal coatings, but it is unsuitable for depositing ceramics. However, cold spray has been used to spray a thin layer of ceramics to improve surface properties. This paper aims to find the spraying parameters to deposit alumina particles onto an aluminum substrate, investigating the retention phenomenon through computational modelling. We used the finite element analysis in the coupled Eulerian Lagrange formulation to predict the particle-substrate interaction. The Johnson-Cook plasticity model and Mie-Gruneisen equation of state were employed to describe the substrate behaviour. Alumina particles were assumed to be elastic. To assess the retention phenomenon, we varied spraying parameters such as particle speed, substrate temperature, and deposition angle. The findings showed that initial velocity and the substrate temperature facilitate penetration of the ceramic particles into the substrate; thus, the penetration increases the chance of retention into the substrate. The deposition angle affects the jet shape, and specific deposition angles cause erosion. Overall, the findings denote that certain cold spraying parameters may improve the retention of ceramic particles into metal substrates.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 360-371, May 24–28, 2021,
Abstract
View Paper
PDF
Anode erosion is a common concern in dc plasma spray torches. It depends largely on the heat flux brought by the arc and the dimensions, residence time, and mode of the arc attachment to a given location on the anode wall. This paper compares anode arc attachment modes predicted by LTE (local thermodynamic equilibrium) and 2-T (two-temperature) arc models that include the electrodes in the computational domain. The analysis is based on a commercial cascaded-anode plasma torch operated at high current (500 A) and low gas flow rate (60 NLPM of argon). It shows that the LTE model predicted a constricted anode arc attachment that moves on the anode ring while the 2-T model predicted a diffuse and steady arc attachment. The comparison between the predicted and measured arc voltage indicated that the 2-T prediction is closer to the actual voltage. A post-mortem observation of a new anode ring on a plasma torch operated under the same conditions confirmed the diffuse arc attachment predicted by the 2-T arc model.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 372-378, May 24–28, 2021,
Abstract
View Paper
PDF
Thermally sprayed coatings can be used in structural health monitoring devices where the coatings can reveal defects in the real-time integrity of the component through changes in mechanical, thermal or modal properties during service. In this emerging application, the mechanical properties of the coating are strongly affected by the interfacial bond between the coating and the substrate. This paper presents an analytical study of the interfacial stress distribution based on piezoresistive-stress constitutive relation of a coating layer. Both a single layer coating- and a bilayer coating-substrate system were considered. An analytical solution of the interfacial stress was developed by solving a Fredholm-Volterra singular integro-differential equation of a coating-substrate model using Chebyshev polynomials. Numerical simulation was conducted to analyze the effects of geometric and effective material properties of the coating-substrate system on the interfacial stress distribution. It was found that the susceptibility of the piezoresistive layer to delamination primarily relies on thicknesses of the coating layers and the stiffness of the intermediary insulating layer and substrate.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 379-385, May 24–28, 2021,
Abstract
View Paper
PDF
Instabilities and fluctuations of the plasma jet can have a significant influence on the particle in-flight temperatures and velocities, thus affecting the properties of plasma sprayed coatings. Presented in this paper is a novel method for capturing the effects particles are exposed to in the plasma spraying process. High-speed camera images of a plasma jet generated by a cascaded three cathode plasma generator (TriplexPro-210) are recorded for varying operating conditions. The images are processed using the inverse Abel transform. This transformation accounts for the fact that the images represent a 2-D projection and generates correct intensity values of the plasma jet images. These images are then combined with particle tracks resulting from CFD simulations of the plasma jet to match the particles path with the recorded plasma jet. This new method allows a precise description of the plasma intensity experienced by individual particles with a high temporal resolution. The results show a high sensitivity of the method, it can even detect the influence of the plasma jet originating from the cascaded triple arc plasma generator, which is considered as rather stable, on the particles.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 386-395, May 24–28, 2021,
Abstract
View Paper
PDF
This study developed microstructure-based finite element (FE) models to investigate the behavior of cold-sprayed aluminum-alumina (Al-Al2O3) metal matrix composite (MMCs) coatings subject to indentation and quasi-static compression. Based on microstructural features (i.e., particle weight fraction, particle size, and porosity) of the MMC coatings, representative volume elements (RVEs) were generated by using Digimat software and then imported into ABAQUS/Explicit. State-of-the-art physics-based modelling approaches were incorporated into the model to account for particle cracking, interface debonding, and ductile failure of the matrix. This allowed for analysis and informing on the deformation and failure responses. The model was validated with experimental results for cold-sprayed Al-18 wt.% Al2O3, Al-34 wt.% Al2O3, and Al-46 wt.% Al2O3 metal matrix composite coatings under quasi-static compression by comparing the stress versus strain histories and observed failure mechanisms (e.g., matrix ductile failure). The results showed that the computational framework is able to capture the response of this cold-sprayed material system under compression and indentation, both qualitatively and quantitatively. The outcomes of this work have implications for extending the model to materials design and under different types of loading (e.g., erosion and fatigue).
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 396-401, May 24–28, 2021,
Abstract
View Paper
PDF
Recently, cold spray (CS) technology has attracted extensive interest as an alternative to thermal spray methods to build a coating, which uses high kinetic energy solid particles to impact and adhere to the substrate. To date, numerous numerical studies have been carried out to investigate the deposition processes and associated mechanisms during multiple particle impact in CS. However, in the commonly used numerical techniques, the individual powder particles are often treated separately from one another, thus fail to properly consider the adhesion mechanisms during deposition. In this study, we propose a new numerical approach on base of peridynamics (PD), which incorporates interfacial interactions as a part of constitutive model to capture deformation, bonding and rebound of impacting particles in one unified framework. Two models are proposed to characterize the adhesive contacts: a) a long-range Lenard-Johns type potential that reproduce the mode I fracture energy by suitable calibrations, and b) a force - stretch relation of interface directly derived from the bulk materials mode I fracture simulations. The particle deformation behavior modeled by the peridynamic method compares well with the benchmark finite element method results, which indicates the applicability of the peridynamic model for CS simulation. Furthermore, it is shown that the adhesive contact models can accurately describe interfacial bonding between the powder particles and substrate.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 402-409, May 24–28, 2021,
Abstract
View Paper
PDF
Additive manufacturing processes have been used to produce or repair components in different industry sectors like aerospace, automotive, and biomedical. In these processes, a part can be built by either melted particles as in selective laser melting (SLM) or solid-state particles as in the cold spray process. The cold spray has gained significant attention due to its potential for high deposition rate and nearly zero oxidation. However, the main concern associated with using the cold spray is the level of porosity in as-fabricated samples, altering their mechanical properties. These pores are primarily found in the regions where adiabatic shear instability does not occur. It is worth noting that the deformation of the impacted solid particle plays a vital role in reaching the shear instability. Therefore, for investigating the adiabatic shear instability region, an elastic-plastic simulation approach has been used. For this purpose, it is assumed that an elevated temperature solid Ti6Al4V particle impacts on a stainless-steel substrate surface at high velocity. The results show that increasing particle temperature will significantly enhance particle deformation because of thermal softening. Additionally, they illustrate that a material jet responsible for producing a bonding between particle and substrate by ejecting the broken oxide layer will be formed when the particle has a temperature above 1073 K and substrate remains at room temperature. In the end, it should be noted that increasing particle temperature up to 723 K will not have a significant effect on substrate deformation and final substrate temperature.
1