Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Date
Availability
1-13 of 13
Industry Applications
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 1-7, April 29–May 1, 2024,
Abstract
View Paper
PDF
A key technology to minimize CO 2 -emissions is the production of hydrogen from water electrolysis. The proton exchange membrane water electrolysis (PEMWE) consists of a stacked system out of bipolar plates (BPP), porous transport layers (PTL) and a membrane electrode assembly (MEA). Research activities are ongoing to minimize material input, reduce costs and increase the performance. For example, the BPP on the anodic side of the stack is currently manufactured of bulk titanium and its substitution by a Ti-coated steel substrate is economically interesting. The main requirements for the BPP-coating are a high coating density, a low electrical resistance and a long lifetime in a harsh electrochemical environment. Coating application on substrates of s ≤ 0.5 mm thickness is conducted with three thermal spraying technologies: Cold Gas Spraying (CGS), High Velocity Air-Fuel (HVAF) spraying and High Velocity Oxy-Fuel (HVOF). Substrate preparation is examined as well. Coating development is conducted with regards to coating thickness, density and oxidation. The examination of coatings includes roughness analysis, structural and chemical analysis. The results allow an evaluation of the suitability of thermally sprayed Ti-coatings by the structural properties for the PEMWE application. Among the three tested processes, CGS is the most suitable for this type of application. The three chosen thermal spraying processes are examined for coating application on metal sheets in context of PEMWE for the first time.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 8-16, April 29–May 1, 2024,
Abstract
View Paper
PDF
All solid-state sodium-ion batteries (ASS-SIBs) have great potential for application to large-scale energy storage devices due to their safety advantages by avoiding flammable organics and the abundance of sodium. In this study, plasma spraying was used to deposit Na 3 Zr 2 Si 2 PO 12 (NZSP) electrolyte for assembling high performance ASS-SIBs. NZSP electrolyte layers were deposited at different spray conditions using NZSP powders in different particle sizes. The factors influencing the microstructure and compositions of NZSP layers were examined by characterizing the compositions of splat and cross-sectional microstructures of the deposits. It was found that the preferential evaporation loss of Na and P elements occurs severely to result in a large composition deviation from initial powders and spray particle size is key factor which dominates their evaporation loss. The APS NZSP electrolytes present a dense microstructure with well bonded splats which is attributed to low melting point of NZSP. The apparent porosity of the as-sprayed NZSPs was lower than 3 %. The effect of annealing on the microstructure of APS NZSP was also investigated. The performance of typical APS NZSP was also evaluated by assembling an ASS-SIB battery with APS NaxCoO2 (NCO), Na 3 Zr 2 Si 2 PO 12 (NZSP) and Li 4 Ti 5 O 12 (LTO) as cathode, electrolyte and anode, respectively. Results showed that columnar-structured grains with a chemical inter-splat bonding were formed across the interfaces between electrodes and electrolyte. There is no evidence of inter-diffusion of zirconium, cobalt and silicon across the NCO/NZSP interface. With the preliminary battery, the solid electrolyte exhibited an ionic conductivity of 1.21 × 10 -4 S cm -1 at 200 o C. The SIB can operate at 2.5 V with a capacity of 10.5 mA h g -1 at current density of 37.4 μA cm -2 .
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 17-26, April 29–May 1, 2024,
Abstract
View Paper
PDF
Cold atmospheric plasma spraying is used to produce thin coatings of copper and tin between 20-80 μm thickness for use in diffusion soldering. This study presents an alternative process to apply composite solders directly onto power electronic bare dies. The formation of intermetallic phases may be promoted by the homogeneous distribution of the Cu and Sn particles as they are presented not in a layered structure but as a pseudo alloy within the coating. The Cu and Sn powder is mixed in situ using two powder conveyors, enabling adjustable mix ratios. The presented approach has been shown to produce a homogeneous particle distribution within the coating. Furthermore, preliminary experiments indicate the feasibility of the technology for applications in diffusion soldering.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 34-39, April 29–May 1, 2024,
Abstract
View Paper
PDF
This study focuses on the development of thermally sprayed coatings for magnetic data storage. In the con-text of Industry 4.0 and the associated digitization of production, there is more demand than ever for suitable data storage on components in order to be able to automatically identify and process products. The resistance of certain sprayed coatings to harsh environmental conditions, make them a promising alternative compared to other solutions for dynamic data storage such as the RFID chips already available on the market. This area of application results in the requirement for a high stability of the written data against external influences such as temperature, wear or interference fields. These requirements can be met by the tailored choice of material including a sufficient magnetic anisotropy of the sprayed coatings. The influence of the spraying process on the formation of the magnetic material properties in the applied coatings is discussed with the aim of being able to change and optimize them in a targeted manner. The characterization of the produced samples is done by structural and magnetic analysis methods
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 75-82, April 29–May 1, 2024,
Abstract
View Paper
PDF
This work focuses on the processing and deposit by suspension plasma spraying (SPS) of ZrO 2 -based ceramic materials for Thermal Barrier Coatings (TBC's) applications. The system of interest is ZrO 2 -16mol%Y 2 O 3 -16mol%Ta 2 O 5 (16YTZ). This ceramic has been reported to keep a non-transformable tetragonal phase (t'-phase), suitable to overcome the thermodynamic limits of the mostly used conventional 7-8wt.% yttria stabilized zirconia (YSZ). The research consists into evaluate the t'-phase stability and performance of the 16YTZ SPS coating. Synthesis of 16YTZ and, the evolution of the resulting microstructure in the dense ceramic and in the coating are a central part of the study. Sintering behavior in dense ceramics prepared from both precursor derived and milled powders is evaluated. Microstructural characterization by XRD, SEM and RAMAN spectroscopy of the as-deposited ceramic coating is presented and discussed.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 83-99, April 29–May 1, 2024,
Abstract
View Paper
PDF
Tantalum and silver are recognized for their outstanding biocompatibility and antibacterial ability, respectively. However, owing to their distinct chemical and physical properties, synthesizing alloys and composites by using Ta and Ag presents a considerable challenge. In this study, Ta-Ag composites, exhibiting good antibacterial ability, were successfully produced by using a solid-state cold spray technique. Notably, intriguing correlations were observed between Ag microstructure and antibacterial ability. To unravel this correlation, a comprehensive experimental and simulation analyze were conducted. It is found that the volume ratio of Ta to Ag in the feedstock powder result in different deformation histories for Ag during the cold spray process. This, in turn, leads to the formation of distinctive Ag microstructures within Ta-Ag composites. The varied Ag microstructures results in different Ag dissolution ability and the formation of an insoluble AgCl layer exhibiting varying morphologies, when Ag exposed in a high chorine ion environment, like in human body fluids. This consequently influences the concentration of Ag ion and ultimately determines antibacterial ability. The study demonstrates that Ag release rate and the related antibacterial properties could be alternatively controlled by changing Ag contains or by creating different deposition process by adjusting CS parameter.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 204-212, April 29–May 1, 2024,
Abstract
View Paper
PDF
Previous own works revealed that novel partially amorphous Fe-based alloys have a combination of proper-ties that are beneficial for the application in liquid hydrogen (LH2) tanks, viz low thermal diffusivity, little porosity, and good adhesion. The influence of cryogenic temperatures or hydrogen on coating tensile strength, on the other hand, has not been investigated yet for this material. However, this is crucial for the long-term durability of the coatings under hydrogen and other alternative fuels. Thus, in this work, tubular coating tensile (TCT) tests were performed at room temperature and cryogenic temperatures. In addition, hydrogen charging was carried out to identify a possible regime that is sufficient for TCT tests under the influence of hydrogen. Subsequently, the fracture surfaces were evaluated analytically, optically and profilometrically. Under cryogenic conditions, a significant increase in tensile strength and a finer structure of the fracture surfaces was observed.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 213-220, April 29–May 1, 2024,
Abstract
View Paper
PDF
The H-class turbine, introduced nearly a decade ago, has reached a significant milestone with its 100th global sale. With 108 units sold and 91 in operation across four continents, accumulating over 3.2 million fired hours, the SGT5-8000H has established itself as a market leader, setting industry benchmarks for performance. Since its launch, the SGT5-8000H's output has increased from 375 MW to 450 MW, and combined cycle efficiency has surpassed 62%. To maintain optimal performance, the platform combustion system (PCS) of the SGT5-8000H has undergone refurbishment in Berlin since 2017. Beginning with a PCS from Samsun, Turkey, the process involves a detailed inspection, repair, recoating, and final assembly. Advanced technologies, such as blue light scanning, enhance efficiency and enable lifecycle assessments. Innovative repair methods, including 3D printed patch repairs using laser powder bed fusion (LPBF), reduce costs. Laser-based cutting and welding automation further minimizes heat input and distortion, ensuring the PCS's reliability and longevity. These technological advancements contribute to the SGT5-8000H's stable and dependable operation.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 221-227, April 29–May 1, 2024,
Abstract
View Paper
PDF
MCrAlY coatings prepared by plasma spraying have been commonly utilized as a thermal protective coating for crucial heated end components due to their high mechanical properties and excellent high-temperature oxidation resistance in aggressive environments. However, the oxides introduced during the preparation process have an adverse impact on the properties of the MCrAlY coatings. In the present work, an attempt was made to deposit NiCrAlY coatings by air plasma spraying (APS) with a low oxide content achieved by introducing carbon as a deoxidizing element. During spraying, the carbon is preferentially oxidized and the formed gaseous CO is completely removed rapidly. Thus, the in-flight oxidation of metal elements can be suppressed to achieve oxide-free particles. Individual in-flight droplets were collected with liquid N 2 to clarify the deoxidation effect. Results demonstrate that the oxygen-free NiCrAlYC droplets can be achieved by adding deoxidizing element carbon. The oxide content of NiCrAlYC particles is 0.43 wt.%, being much lower than the 2.87 wt.% of conventional NiCrAlY particles. The adhesive strength test yielded an adhesive strength higher than 71 MPa for NiCrAlY coatings APS-prayed by the oxide-free NiCrAlYC molten droplets, which is much higher than 53 MPa for the conventional NiCrAlY coatings.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 228-232, April 29–May 1, 2024,
Abstract
View Paper
PDF
One of the promising thermal barrier coatings (TBC) options for use above 1250 °C has been La 2 Ce 2 O 7 (LC). This work explored the role of dual layered ceramic coatings in the top layer of the TBC system that has been prepared using atmospheric plasma spraying (APS). Above the NiCrAlY bond coat, 8 mol.% yttria stabilized zirconia (8YSZ) coating has been deposited with optimized APS parameters. Over the top layer (8YSZ), another layer that comprises composite with LC and 8 wt.% of 8YSZ (spray dried) has been deposited. Investigations into the hot-corrosion behavior of 8YSZ-LC based TBC subjected to Na 2 SO 4 +V 2 O 5 salt at 950 °C for 4 hours. A porous layer made mostly of LaVO 4 , CeO 2 , CeO 1.66 and YVO 4 was developed on the LC+8wt.% YSZ layer after being subjected to a hot corrosion test in Na 2 SO 4 +V 2 O 5 salt. Dissociation of LC and 8YSZ leads to the formation of new phases, such as CeO 1.66 , CeO 2 , LaVO 4 and YVO 4 as the corrosion by-products in the extreme environment. The findings indicated that delamination has occurred due to the phase transformation, cavities and cracks in the 8YSZ-LC based TBCs. The molten salt's hot corrosion mechanisms of the 8YSZ-LC based TBC are discussed in detail. Further, the potential use of 8YSZ-LC based dual coatings and scope for the future work have been derived from the current study.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 233-239, April 29–May 1, 2024,
Abstract
View Paper
PDF
The applications of Wire Arc Spraying (WAS) include large-area corrosion protection coatings e.g. the protection of off-shore wind power plants. While WAS is cost efficient and well-known, the inherent instabilities can lead to coating defects and subsequent vulnerabilities in the corrosion protection coating. The occurrence of these process-related fluctuations cannot be predicted by deterministic models. However, these fluctuations can be monitored in situ, analyzed and finally minimized. A sensor unit is set up on the free jet of a WAS process using ZnAl15 wire. Voltage, amperage, noise and wire feed rate are measured in situ at a sampling rate of 80 MHz. Following a design of experiments approach, 64 different parameter settings are run and measured. For that purpose, voltage, atomizing gas and wire feed rate of the free gas jet have been varied. A generalized linear model (GLM) is trained on the dataset. A Fast Fourier Transformation (FFT) in conjunction with smoothing filters is conducted. Adopting the GLM enabled the calculation of parameters that minimize process fluctuations. Plots in the form of response surfaces depict the influence of the varied parameters on the process stability. A signal analysis using FFT revealed major periodic changes of the voltage in the range of 0.5-1 kHz next to process control-related frequencies at 20 kHz. The mounting and structuring of the data as well as the calculation of key figures is fully automated. Due to the high degree of automation, large quantities of data can be processed. In the future, a simplified version of the adopted sensor unit may be adopted to optimize parameters in an autonomous way. This can ensure not only the minimization of process fluctuations for any chosen feed wire, but also indicate irregularities in the process. The high-resolution recording and automated analysis of the data allows the determination of optimized parameters as well as major underlying frequencies.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 240-247, April 29–May 1, 2024,
Abstract
View Paper
PDF
The US Navy has adopted High-Pressure Cold Spray (HPCS) as a repair technique for corroded and worn components in their fleet of aircrafts, ships, and submarines. HPCS repairs are not only used for depositing corrosion and wear resistant coatings but is being successfully used for dimensional restoration in metal parts and components. By utilizing HPCS, the Navy ensures the longevity and reliability of critical components, even in harsh environments. Whether safeguarding against corrosion or restoring worn parts, HPCS is playing an increasingly critical role in maintaining operational readiness for the US Navy and other DOD agencies, as well as the commercial industry.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 248-255, April 29–May 1, 2024,
Abstract
View Paper
PDF
Cavitation is a wear process in engineering systems caused by the energy release of collapsing bubbles leading to the failure of critical components such as valves, pumps, and propellers. Thermally sprayed coatings can be applied to improve the wear resistance of these components. This investigation considers a WC-NiCrBSi coating composition under cavitation wear, where the WC phase provides the strength and the NiCrBSi matrix offers corrosion resistance in seawater. Coatings were deposited on AISI 440C stainless steel discs of 32mm diameter and 8mm thickness using industrially optimized parameters for the HVOF JP5000 system. Indirect cavitation tests were conducted using a modified ASTM G32 testing procedure on coated test coupons in as-sprayed and Hot Isostatic Pressed (HIPed) conditions. Two tests were performed for each coating using natural seawater of pH 8.19 at room temperature, and averaged wear values are reported to compare the cavitation rate and cumulative mass loss of the coatings. Coating microstructural phases in the as-sprayed and HIPed conditions were identified using X-ray diffraction. The microstructure of the coating substrate system and post-cavitation test wear scars were investigated using Scanning Electron Microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). This investigation provides an understanding of the corrosive-cavitation wear behavior and failure modes of coatings. The cavitation erosion rate and cumulative mass loss results showed that the as-sprayed WC-NiCrBSi coatings improve the cavitation wear resistance of the substrate.