Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Date
Availability
1-12 of 12
Functional Coatings
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 365-375, April 29–May 1, 2024,
Abstract
View Paper
PDF
The performance and, as a consequence, the application of functionalized fiber-reinforced plastic (FRP) are limited due to low adhesion strengths between the metal coating and the polymer-based substrate. Common pre-treatment methods, to successfully apply a metal coating by thermal spraying on commercial FRP, are mechanical blasting, etching or thermal treatment. Moreover, additional layers made of metal wire or sand have been integrated into the FRP surface. A promising material-sensitive pre-treatment method for FRP substrates is laser micro structuring. This method avoids uncontrolled damage of surface-near fibers and offers an increased interface area. Unique for pulsed laser structuring is the opportunity to achieve a clamping effect between the functional coating and the FRP by a trench-like structure.
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 376-381, April 29–May 1, 2024,
Abstract
View Paper
PDF
Bond coats are used to protect the superalloy from oxidation and to serve as a bond between the ceramic thermal barrier coating (TBC) layer and the superalloy. During high temperature exposures, a thermally grown oxide (TGO) layer forms between the bond coat and the topcoat due to oxygen diffusion, leading to coating failure in the components. This study aimed to investigate the microstructure evolution of three TBCs with different cold-sprayed bond coat alloys after undergoing isothermal heat treatments. The TBCs were heat treated at 1100 °C for durations of 12, 25, and 50 hours to observe the effects of temperature on the microstructure and phase distribution. The microstructure of heat-treated bond coat alloys was examined using scanning electron microscopy and x-ray diffraction. The findings are discussed in relation to the characteristics of the coating alloy and the application process.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 316-322, May 22–25, 2023,
Abstract
View Paper
PDF
Temperature sensors are critical components in many industrial and research applications, particularly in harsh environments where high temperatures, corrosion and mechanical stress are prevalent. In this paper, we investigate the use of plasma spray technique as a versatile and simple method to print thermocouples and Resistance Temperature Detectors (RTDs) on metallic and ceramic substrates. The thermocouples based on NiCr-NiAl coatings were directly printed using thick metallic masks, while the RTD’s were structured using laser ablation. The manufacturing methods and the preliminary characterization of these temperature sensors are presented and discussed.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 323-329, May 22–25, 2023,
Abstract
View Paper
PDF
The application of thermally sprayed coatings on CFRPs has gained great interest to enhance thermal and tribological properties and several processes have been optimized. However, for the coating of internal surfaces of tubes there is no sufficient technical solution. This paper introduces a novel and unique process technique for coating the internal surfaces of CFRP tubes using the transplantation of thermally sprayed coatings. A negative shape tube with defined surface and material properties was used as a mandrel and coated using atmospheric plasma spraying (APS). The CFRP was then produced using filament winding onto the coating, and after curing, the specimen was separated from the mandrel. With this process innovation, CFRP tubes with internal ceramic or metallic coatings can be produced without any thermal degradation of the polymeric matrix or damage to the carbon fibers. Compared to conventional coating methods, this novel process technique has several advantages. It allows for the production of internal coatings with low roughness of R z = 10 μm as sprayed without post-processing. The specimens also have a significantly lower tendency to corrode compared to conventional coated CFRPs. A high adhesion strength of the coatings of 15.9 MPa was achieved and the hardness of the internal ceramic coating is 918 HV0.1
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 330-335, May 22–25, 2023,
Abstract
View Paper
PDF
With an increasing demand for lower fuel consumption of different means of transportation, the demand for lightweight construction materials is rising. In this frame, usually metallic parts can be replaced by components consisting of fiberreinforced plastics. On the other hand, the components lose their electromagnetic field (EMF) shielding properties, which are required for many applications such as housings for electrical components. This issue can be solved by applying electrically conductive foils or meshes, often by a manual process that increases the time of production and process. In this publication, the application and parameter influence of thermally sprayed electrically conductive coatings for EMFshielding applications is discussed. Laser structuring is used as a novel surface preparation process, for the subsequent thermal spray process. The influence of the used laser-parameters is discussed accordingly. The coatings are applied by the wire-arc spray with Zinc feedstock as well as the atmospheric plasma spray (APS) process with Copper feedstock. It was found that coating properties such as adhesion strength, EMF-shield strength as well as electrical properties are provided by the proposed technology.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 336-343, May 22–25, 2023,
Abstract
View Paper
PDF
Fluorinated polymer coatings are potential candidates for ice protection systems. The current work aims to develop such coatings using cold spray as a production method. A computational approach is used to design a new cold spray nozzle for the efficient deposition of adhesive perfluoroalkoxy alkane. The icephobicity of as-sprayed coatings are evaluated using three-fold characterization: surface’s wetting behavior, time-lapse study of water droplets freezing, and ice adhesion at both macro and microscopic levels. While the as-sprayed coatings exhibited sought superhydrophobic properties, their behavior changed when exposed to frost formation resulting in degraded wetting behaviors and much larger ice adhesion strength. This demonstrates the importance of frost formation when studying icephobic coatings.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 504-511, May 26–29, 2019,
Abstract
View Paper
PDF
In this study, NiCr alloy coatings were deposited by arc spraying using different combinations and mixtures of pressurizing gases and other process modifications. Coating properties were examined mainly by SEM, EDS, and conductivity measurements. The results show significantly reduced oxygen contents and improved coating morphologies compared to reference coatings produced using current plasma processes. Improved microstructure is shown to have a positive effect on surface quality and specific resistivity, making it possible to texture arc-sprayed coatings just as successfully as the plasma-sprayed reference layers. Moreover, the temperature coefficients and resistivities of arc-sprayed NiCr were found to be superior to those of conventionally manufactured coatings.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 491-496, May 26–29, 2019,
Abstract
View Paper
PDF
Aluminum castings have limited strength and stiffness and tend to exhibit brittle fracture behavior under fatigue loading. These properties can be significantly improved, however, as this study shows, by reinforcing cast aluminum parts with magnesium metal-matrix composite structures. In order to obtain a bond between the cast Al and fiber-reinforced Mg composite surfaces, Al alloy (Al 99 and AlSi 12 ) layers were deposited on the Mg structures by thermal spraying. The mechanical properties of the bonding were assessed via single-lap shear and adhesive tensile tests along with optical microsection analysis. Hybrid aluminum alloy AlSi 10 Mg castings incorporating coated Mg-MMC inserts were also produced and examined, validating the general approach, while revealing that heat input to the MMC structure must be reduced through design or process adaptations.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 497-503, May 26–29, 2019,
Abstract
View Paper
PDF
This study assesses the influence of particle size and spray parameters on the structural, mechanical, and electrical insulation properties of alumina coatings deposited by atmospheric plasma spraying. It has been found that the combination of a relatively fine feedstock powder and high velocity plasma spraying promotes the formation of denser coatings with high dielectric strength. Correlations between dielectric strength and deposition efficiency, coating hardness, crystal structure, and surface roughness are also assessed.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 512-519, May 26–29, 2019,
Abstract
View Paper
PDF
This study investigates the microstructure and efficiency of coating-based heating elements produced by deposition of various powders, including aluminum oxide (Al 2 O 3 ), alumina-titania (Al 2 O 3 -TiO 2 ), nickel-chromium (NiCr), and copper, using flame spraying, suspension plasma spraying, high-velocity oxyfuel (HVOF) spraying, and cold spraying techniques. The main goals are to assess the dielectric strength of flame and plasma sprayed alumina, compare the electrical resistivity of HVOF and flame sprayed NiCr, and obtain coating cross-sectional images to shed light on the challenges and potential of different heating element designs. The Al 2 O 3 layer produced by suspension plasma spraying appeared to be more reliable due to its cauliflower-like structure, corundum content, and hygroscopic properties. Resistivity was found to be higher in the flame sprayed NiCr than in the HVOF deposit mainly due to discontinuities and imperfections such as cracks, pores, and oxygen content. The micrographs taken from sample cross-sections show penetration of flame-sprayed NiCr into the flame-sprayed Al 2 O 3 and Al 2 O 3 -TiO 2 layers, which decreases the effective thickness of the dielectric. However, interlocking between NiCr and Al 2 O 3 -TiO 2 coatings can be beneficial when cohesion is a concern.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 520-526, May 26–29, 2019,
Abstract
View Paper
PDF
The economic feasibility of using thermal-sprayed heat generating coatings for temperature control in steel pipes was investigated. A data-intensive model was developed to compare fabrication, installation, operation, and maintenance expenditures with those of conventional heating cables. The multi-layered coating consists of flame-sprayed Al 2 O 3 and NiCr layers and cold-sprayed copper. Scalability factors were incorporated in the model to estimate the total projected costs for fabricating the coatings as opposed to installing heat tracing. Although material costs for the coating and heat tracing were approximately the same, the cost of fabrication for the coating was higher due mainly to labor expenses. However, the coating-based system was found to be more energy efficient than heat tracing due to the good adhesion and reduced thermal contact resistance between the heating elements and pipe.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 527-534, May 26–29, 2019,
Abstract
View Paper
PDF
This study investigates the effect of incorporating different reinforcing particles on the microstructure, electrical resistance, and heating efficiency of flame-sprayed nickel-based coatings. Feedstock powders were prepared by adding Al 2 O 3 , TiO 2 , and WC particles to NiCrAlY powder, and the various combinations were applied to alumina-coated carbon steel substrates. A number of Joule heating experiments were conducted by creating voltage differences across the coatings and measuring temperature changes due to induced electron flow and associated resistive heating. It was found that the electrical properties of the ceramic particles have a major effect on heat generation and that there is considerable room for improvement.