Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Date
Availability
1-3 of 3
Electronic and Sensing Applications
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 649-653, June 7–9, 2017,
Abstract
View Paper
PDF
In order to meet the increased requirements for power electronics in the automotive sector, an effective utilization of difficult installation spaces is necessary. A new production concept to realize this 3D integration of electronic circuit boards directly on components is the combination of thermal spraying and cold gas spraying to create multilayer-coating systems consisting of conducting and insulating coatings. In this study two- and tree-dimensional demonstrators were developed, showing the flexible use of thermal spraying in mechatronics and power electronics. In contrast to past studies on this construction concept, the main focus of this study was on the optimization of the ceramic insulting coatings and bond strength of the metallization. The ceramic coatings showed a dielectric strength and electrical resistance, which was suitable for most applications. Additional post treatment improved the electrical resistance in humid conditions. Already 150 µm thick electrical insulation layers showed a breakdown voltage of more than 5 kV AC and a specific electrical resistance of 5.1011 Ω.m.
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 654-659, June 7–9, 2017,
Abstract
View Paper
PDF
By means of In-Mold-Metal-Spraying (IMMS), wire arc sprayed metal coatings are transferred onto plastic parts during the injection molding process for the efficient production of metallized plastic parts. One potential field of application of IMMS parts are electrical applications such as electrically conductive tracks or electromagnetic shielding. In the current study, the properties of the transferred coatings, especially the electrical resistivity, are determined. Different feedstock materials are used for the application of the coatings. In the first investigation, pressurized air is used as atomizing gas for wire arc spraying. In contrary to Zn coatings, Cu coatings applied with pressurized air have a significantly higher electrical resistivity in comparison to massive copper. One possible reason for this is the oxidation of the Cu particles during the spraying process. Therefore, N 2 and a mixture of N 2 and H 2 are used as atomizing gas to reduce the oxidation of particles. Consequently, the electrical resistivity of IMMS parts can be significantly reduced. Furthermore, spraying distance, current and pressure of the atomizing gas are varied to investigate the influence of these process parameters on the coating properties.
Proceedings Papers
Liquid Flame Spray Fabrication of WO 3 -Graphene Nanocomposite Coatings for Gas-Sensing Applications
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 660-664, June 7–9, 2017,
Abstract
View Paper
PDF
There have been increasing demands for adequate gas sensors to monitor O 3 , a respiratory irritant gas associated with a spectrum of adverse health events. Here we report film construction by liquid flame spray route and characterization of nanostructured WO 3 -reduced graphene oxide (rGO) composites and their gas-sensing activities to O 3 . The starting feedstock was prepared from WCl 6 and rGO for pyrolysis synthesis by flame spray. Nanosized WO 3 grains exhibited oriented nucleation on rGO flakes and rGO retained intact nano-structural features after the spraying. Constrained grain growth of WO 3 was realized in the rGO-containing films with 60-70 nm size as compared to ~220 nm in the pure WO 3 film. The WO 3 -rGO film sensors showed quicker response to O 3 and faster recovery than the rGO-free WO 3 film sensors. Addition of rGO in 1.0wt.% or 3.0wt.% in the films caused significantly reduced effective working temperature of the film sensors from ~250°C to ~150°C. These results might shed some light on liquid flame spray fabrication of novel functional nanocomposites for gas-sensing applications.