Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Date
Availability
1-8 of 8
Cold Sprayed or Aerosol Deposition: Metals, Polymers, Ceramics, and Metal Matrix Composite Coatings
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 242-249, May 22–25, 2023,
Abstract
View Paper
PDF
The performance of two distinct coating materials under alumina particle impingement was tested in this study. CrMnFeCoNi and WC-Ni coatings were applied to 2205 duplex stainless steel substrates using cold spray method with nitrogen as the process gas. In between the substrate and the high entropy alloy coating, an interlayer coating of 316 stainless steel was used. The presence of WC particles in the WC-Ni composite coatings was confirmed by SEM cross sectional inspection. Following deposition, the coatings were heat treated in an air furnace. The influence of heat treatment holding time on the WC-Ni coatings was studied using chemical analysis by X-ray diffraction. Heat treatments peak temperatures for the WC/Ni- Ni and high entropy alloy coatings were 600°C and 550°C, respectively. Coatings microhardness and porosity volume fraction were measured for all the samples. The HEA coating outperformed the WC/Ni-Ni hardness but exhibited a higher level of porosity. The coatings were then subjected to erosion experiments using alumina particles with variable impact angles (30°, 60°, and 90°). To compare the different materials, an average erosion value was calculated for each target specimen. The WC/Ni-Ni as-sprayed coating was the most effective against a 60° impingement angle. The HEA coating, on the other hand, demonstrated greater resistance to impact angles of 30° and 90°. SEM was utilized to examine the eroded areas and determine the main mechanisms of erosion.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 250-257, May 22–25, 2023,
Abstract
View Paper
PDF
Tailoring strength and ductility in additive manufacturing or repair is key to successful applications. Therefore, cold spraying must be tuned for maximum amounts of well-bonded internal interfaces as well as sufficient softening of the highly workhardened deposit. Zinc (Zn) with its low melting temperature is an ideal model system to study phenomena associated with high strain rate deformation and local temperature distributions, both, in single impacts and thicker deposits. Bonding and recrystallization can be facilitated by covering selected wide parameter regimes in cold spraying. Despite the low temperatures, Zn single splats already show recrystallization at internal interfaces, the respective amounts then scaling with increasing process gas temperatures. At higher process temperatures, deposits are almost fully recrystallized. The recrystallization seems to improve bonding at internal and at deposit-substrate interfaces. Under optimum conditions, an ultimate deposit cohesive strength of up to 135 MPa and an elongation to failure of 18.4% are reached, comparable to that of laser-manufactured or bulk Zn parts. This demonstrates a welltuned interplay between high amounts of bonded interfaces and softening by recrystallization that allows for deriving bulk-like performance of cold sprayed material without additional posttreatments. Correlations between microstructures, mechanical properties, and fracture mechanisms supply information about prerequisites needed for reaching high ductility as obtained in damage and failure modes of deposits and bulk materials in global and local approaches.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 258-265, May 22–25, 2023,
Abstract
View Paper
PDF
Cold spraying has great potential for additive manufacturing, especially of oxidation-sensitive metals, because the material is not melted and significantly higher deposition rates can be achieved than with conventional additive manufacturing processes such as selective laser melting or direct metal deposition. Titanium is regarded as a high-performance engineering material due to its unique combination of properties, including good corrosion resistance, biocompatibility and high strength at comparatively low density. However, due to its high price, it appears reasonable for many applications to use material compounds in which titanium is only used on the surface of the workpiece, while less expensive materials such as aluminum are used for the remaining volume. In the present work, cold sprayed pure titanium coatings were deposited on Al substrates and then formed to defined 3-dimensional final contours by die forging and rotary swaging. Different porosities were selectively set in order to evaluate their influence on the coating adhesion and cohesion in the forming process. Pre-consolidation of the coatings and the use of Al/Ti interlayers proved to be promising strategies.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 266-272, May 22–25, 2023,
Abstract
View Paper
PDF
Cold spraying (CS) of high strength materials, e.g., Inconel 625 is still challenging due to the limited material deformability and thus high critical velocities. Further fine tuning and optimization of cold spray process parameters is required, to reach higher particle impact velocities as well as temperatures, while avoiding nozzle clogging. Only then, sufficiently high amounts of well-bonded particle-substrate and particle-particle interfaces can be achieved, assuring high cohesive strength and minimum amounts of porosities. In this study, Inconel 625 powder was cold sprayed on carbon steel substrates using N 2 as propellant gas under different refined spray parameter sets and powder sizes for a systematic evaluation. Coating microstructure, porosity, electrical conductivity, hardness, cohesive strength and residual stress were characterized in as-sprayed condition. Increasing the process gas temperature or pressure leads to low coating porosity of less than 1 % and higher electrical conductivity. The as-sprayed coatings show microstructures with highly deformed particles and well bonded internal boundaries. X-ray diffraction reveals that powder and deposits are present as γ- solid-solution phase without any precipitations. By work hardening and peening effects, the deposits show high microhardness and compressive residual stresses. With close to bulk material properties, the optimized deposits should fulfill criteria for industrial applications.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 280-287, May 22–25, 2023,
Abstract
View Paper
PDF
A previous study on the pull-off testing of metallized carbon fiber reinforced polymers (CFRPs) via cold spray showed that better adhesion strengths could be obtained when features such as carbon fibers or surfacing elements were present, by providing potential mechanical interlocking features. In this work, the effect of the fiber orientation on the deposition and bonding of the metallic coating to the thermoplastic composite substrate is explored. Pure Sn powder was cold sprayed onto two thermoplastic Polyether-Ether- Ketone (PEEK) CFRP substrates, containing carbon fibers with different orientations: one had fibers in the plane of the substrate (uni-directional tape), while the other had fibers mostly perpendicular to the substrate (ZRT film). Characterization of the coatings was performed via scanning electron microscopy (SEM) and confocal microscopy, and some aspects of mechanical testing (namely wear and scratch testing) were carried out to assess the effect of the substrate on the properties of the coatings.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 273-279, May 22–25, 2023,
Abstract
View Paper
PDF
Polymers have proven to be challenging to cold spray, particularly with high efficiency and quality when using inexpensive nitrogen (N 2 ) and air propellants. Helium (He) when used as a process propellant can improve spray deposit properties but is often undesirable due to its limited availability and high cost. In this study, additives of multiple particle sizes and materials were mixed with polymer powder in an effort to improve the performance of polymer sprays using mainly N 2 as a process propellant. The effects of additives on deposit microstructure were investigated by precise ion-beam polishing of deposit cross sections and subsequent electron microscope imaging. Additional metrics including the density and post - spray composition of deposits were investigated to quantify the peening effect and the amount of embedded additive. Additives, regardless of size, were observed to embed in the spray deposits. Additionally, hard-phase additives demonstrated nozzle-cleaning properties that continually remove polymer fouling on the nozzle walls. Inversely, sprays with polymer powder and no additives tended to clog the nozzle throat and diverging section as a result of continual fouling.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 288-294, May 22–25, 2023,
Abstract
View Paper
PDF
Successful cold spray of tool steels and other hard steels would unlock several opportunities, including the repair of molds as well as ships and heavy industry components. However, the high hardness of typical atomized steel powders strongly limits their cold sprayability. It has been recently demonstrated that heat treatment in a rotating furnace can significantly improve H13 cold sprayability via softening and agglomeration. In this work, this powder modification method is extended to a range of transformation hardenable steels: 4340, SS420, A588, 1040 and P20. The results show that powder heat treatment improves the powder deposition efficiency and the quality of the final cold sprayed coating, probably as the result of the decreased powder micro-hardness. The effects of the powder heat treatment atmosphere, a key parameter, will also be presented and discussed.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 295-302, May 22–25, 2023,
Abstract
View Paper
PDF
Zinc oxide (ZnO) is known for its rich diversity of microstructures and has been attracting attention for its unique combination of mechanical and physical properties. It has been a material of interest in different areas such as optoelectronics, sensors and the general ceramic industry. It also has been a material of interest in biomedicine due to its antimicrobial characteristics and biocompatibility properties. A simple processing route to produce ZnO micro/nanostructures is the thermal oxidation of zinc, which results in a wide range of ZnO nanostructures depending on the oxidation conditions. The main objective of this study was to investigate the influence of a severe plastically deformed zinc microstructure on the formation of ZnO nanostructures produced by oxidation, with a special attention to the zinc oxide growth mechanism and nanostructures characteristics. For this purpose, the cold spray process was used to produce Zn coatings using different feedstock powders that required different process parameters in order to obtain Zn coatings with severely deformed particles. A non-catalytic thermal oxidation method was then used to successfully produce ZnO nanostructures at the surface of the heavily deformed cold sprayed Zn coatings. The as-grown ZnO nanostructures were investigated in detail using scanning electron microscopy and X-ray photoelectron spectroscopy. These investigations revealed that the chemical fingerprint of the oxides grown in the cold sprayed samples was different from that of conventional ZnO. It was also observed that in the oxidized cold sprayed Zn coatings, the formation of ZnO nanowires was hindered due to the formation of blisters generated during the high temperature exposure, revealing nonoptimized process parameters.