Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Date
Availability
1-9 of 9
Cold Spray Processing, Simulation, and Particle Impact
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 214-220, May 24–28, 2021,
Abstract
View Papertitled, Spray Pattern of Aluminum Coatings with the Rectangular Cross-Section Nozzle Calculated by the Computational Fluid Dynamics (CFD) in High-Pressure Cold Spray
View
PDF
for content titled, Spray Pattern of Aluminum Coatings with the Rectangular Cross-Section Nozzle Calculated by the Computational Fluid Dynamics (CFD) in High-Pressure Cold Spray
In the cold spray process, cross-sectional shape of the nozzle has a significant effect on spray pattern of coatings. The circular exit nozzle is parabolic in shape. So, spray pattern with the rectangular nozzle is wider than that with the circular spray nozzle. The goal of this investigation is to establish a design for the cold spray gun nozzle to gain more uniform spray profile of coatings. We have investigated the influence of expansion ratio, nozzle total length and the ratio of nozzle length of divergent section and parallel section of rectangular nozzle on behaviors of gas and particle by the computational fluid dynamics (CFD) in high pressure cold spraying. We have studied copper particles so far. In this study, we will examine aluminum particles. First, we investigate the influence of the size and shape of the rectangular section nozzle on the velocity, temperature, and particle distribution of aluminum particles by CFD. After that, the rectangular section nozzles were fabricated and coating formation experiments were conducted, spray patterns and coating cross-sectional structures were observed, and coating adhesion was also evaluated. The nozzle material was polybenzimidazole resin, which is difficult for aluminum particles to attach to nozzle walls.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 221-228, May 24–28, 2021,
Abstract
View Papertitled, Parametric Redesign of a Convergent-Divergent Cold Spray Nozzle
View
PDF
for content titled, Parametric Redesign of a Convergent-Divergent Cold Spray Nozzle
The generation of a high velocity carrier gas flow for cold metal particle applications is addressed, with specific focus on titanium cold spraying. The high hardness of this material makes cold spraying titanium difficult to achieve by industry standard nozzles. The redesign of a commercial conical convergent-divergent cold spray nozzle is achieved by the application of aerospace design codes, based on the Method of Characteristics, towards producing a more isentropic expansion by contouring the nozzle walls. Steady three-dimensional RANS SST k-ω simulations of nitrogen are coupled two-way to particle parcel tracking in the Lagrangian frame of reference. The new contoured nozzle is found to produce higher particle velocities with greater radial spread, when operated at the same conditions/cost of operation as the commercial nozzle. These numerical results have shown the potential for extending cold spray to high density and low ductility particles by relatively minor rig modifications, through an effective synergy between gas dynamics and material science.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 229-234, May 24–28, 2021,
Abstract
View Papertitled, Computational and Experimental Analysis of the Phenomenological Gas Flow Behavior and Particle Kinematics During Low Pressure Cold Spraying
View
PDF
for content titled, Computational and Experimental Analysis of the Phenomenological Gas Flow Behavior and Particle Kinematics During Low Pressure Cold Spraying
In this paper, the phenomenological behaviour of gas flow and particles motion during cold spraying has been studied. Observations of particles behaviour show two features: a uniform jet over a short distance ahead of the nozzle exit and then, a progressive dispersion. These behaviours are explained using a computational analysis based on a direct numerical simulation of the gas flow and the kinematic interactions with the particles. The CFD computation demonstrates that the gas stream starts to be unstable inside the nozzle with more turbulence as it moves towards the exit of the nozzle. The flow is self-oscillated along the flow direction and drives the motion of the Cu particles outside the nozzle. The zone of gas flow instability does correspond to the zone of experimental particle dispersion. Outside the nozzle, the particles form a straight jet over a certain distance that corresponds to the zone of the experimental uniform particles jet. Then, they are deviated and become more and more dispersed towards a very sparse jet along the flow direction. This phenomenon is explained by a Magnus lift force that deviates the particles trajectory when the gas flow becomes highly turbulent while developing a vorticity shedding.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 235-240, May 24–28, 2021,
Abstract
View Papertitled, A Novel Modeling Method to Study the Oxide Layer Effect on Metallic Bonding in Cold Gas Dynamic Spray Process
View
PDF
for content titled, A Novel Modeling Method to Study the Oxide Layer Effect on Metallic Bonding in Cold Gas Dynamic Spray Process
In this study, a new physically-based finite element approach is proposed to model and predict the superficial oxide layer removal and the occurrence of localized metallic bonding during particle impacts. The process physics, based on explosive welding theory and experiments, and method implementation is presented. Prediction of critical velocity of copper is obtained and compared to experimental data to validate the model. Moreover, the model is also able to show the bonding locations at the interface between particles and substrate. The predicted bonding locations are consistent with experimental data from literature for several metals.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 241-246, May 24–28, 2021,
Abstract
View Papertitled, Adhesion Strength Improvement by Laser Surface Texturing of Metallic Repair Coatings Deposited by Cold Spraying
View
PDF
for content titled, Adhesion Strength Improvement by Laser Surface Texturing of Metallic Repair Coatings Deposited by Cold Spraying
Cold spray process was chosen as a good candidate for dimensional restoration and protection of components. Commercially pure aluminum, aluminum-alloy or titanium were recommended for different applications. This paper investigates laser surface texturing association to enhance durability of sprayed coatings. Laser is easy automated, localized and reliable process. It was applied for prior-surface treatment. Textured surfaces were produced and compared to conventional treatments, such as grit-blasting, in terms of deposition efficiency and adhesion bond strength. Patterns promoted direct particle embedment. Particle-substrate interface exhibited significant temperature rate and strain in cavities. Intimate contacts and particle compressive states were assumed responsible for improvement. The particle deformation and bonding behaviors were evaluated and discussed for the different configurations. Thus, window of deposition was increased with laser surface texturing. Anchoring mechanisms increased two fold the adhesion strength compared to conventional pre-treatments. In one case, the interface was stronger than the coating cohesive strength.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 256-260, May 24–28, 2021,
Abstract
View Papertitled, Strain Gradient Plasticity Modeling to Evaluate Material Plastic Deformation Behavior During Cold Gas Dynamic Spray Process
View
PDF
for content titled, Strain Gradient Plasticity Modeling to Evaluate Material Plastic Deformation Behavior During Cold Gas Dynamic Spray Process
Severe plastic deformation (SPD) is the main feature of the Cold Spray (CS) process, which might result in producing metal grain refinement under extensive hydrostatic pressure and high strain rate loading conditions. In this study, an anisotropic strain gradient plasticity model (SGP) is presented to predict materials behavior in CS process. The enhanced dislocation densities produced throughout particle deformation affect coating material properties and modify their thermodynamic characteristics and kinetics of resistance to plastic deformations. This study also demonstrates that the SGP model can describe the experimentally observed trends and account for homogenization of the accumulated strains under dynamic recrystallization conditions. The evolution of statistically stored dislocation density through the characteristic material length scale parameter is in good agreement with experimental results and data reported by other research groups. The proposed SGP modeling is suggested as an express method to evaluate the advanced coating and additively manufactured materials, and powder feedstock used in thermal spray and 3D manufacturing applications.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 247-255, May 24–28, 2021,
Abstract
View Papertitled, Strengthening Mechanism of Additively Manufactured Cold Spray Al Deposits under Low Deposition Efficiency
View
PDF
for content titled, Strengthening Mechanism of Additively Manufactured Cold Spray Al Deposits under Low Deposition Efficiency
In this study, a novel strategy to manufacture high strength cold-sprayed Al coating by using powder with wide size distribution is proposed. The microstructure and mechanical properties of deposited coating sprayed at three typical impact velocities before and after heat treatment are investigated. Furthermore, the deposition and strengthening mechanisms of the coating sprayed at various impact velocities are clarified. The results show that the coating with higher density and mechanical properties can be successfully fabricated by cold spray at comparatively low particle impact velocity. The mechanical properties were enhanced with the contribution of heat treatment process. It is the in-process tamping effect induced by larger powder that results in the severe plastic deformation thus leads to densification and excellent mechanical properties of the cold-sprayed Al coating.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 261-267, May 24–28, 2021,
Abstract
View Papertitled, Study of the Effect of Thickness on the Residual Stress Profile of a Cold Spray Coating by Finite Element Analysis
View
PDF
for content titled, Study of the Effect of Thickness on the Residual Stress Profile of a Cold Spray Coating by Finite Element Analysis
The understanding of residual stress is of critical importance in the cold spray and thermal spray processes. It has a direct effect on the integrity of the coating related to the adhesion strength, fatigue life, and can lead to undesired effects such as the delamination of the coating. In cold spray, several investigations have evaluated the impact of the residual stress on the coatings, and it is generally accepted that cold spray coatings follow a similar profile to those obtained in the shot peening process. Although the measurement of residual stresses gives fundamental insight into the process, the estimation of such stresses considering the deposition of each layer by numerical methods has not been extensively studied. This work proposes a method for analyzing the evolution of residual stress on a cold spray coating, both on the coating and the substrate, as a function of the deposited layers, using Finite Element Analysis (FEA). The evolution of the residual stress profile with the coating thickness was obtained along the transverse direction. The results were compared to experimental and numerical data from previous studies. The influence of the deposition of each layer on the residual stress profile has been discussed.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 268-273, May 24–28, 2021,
Abstract
View Papertitled, Enhanced Antibacterial Properties of Copper Surfaces Using Cold Spray Shot Peening
View
PDF
for content titled, Enhanced Antibacterial Properties of Copper Surfaces Using Cold Spray Shot Peening
Metal surface characteristics play a significant role in interacting with their biological environment. Copper surfaces have been identified for their antimicrobial properties. Improvement of antibacterial and antiviral performances can be tailored by surface microstructure modification. Severe plastic deformation is an effective surface modification procedure to improve the mechanical performance of metal surfaces. This technique can be adapted to obtain surface grain refinement and induce surface roughness. In this work, cold spray shot peening is used to modify copper substrate surfaces and study the effects on their antibacterial properties. To modify the grain structure of copper, different shot-peening parameters were examined. The surface roughness and microstructure were investigated by employing optical and scanning electron microscopy. The bactericidal activity of copper substrates after shot peening treatment is discussed and a comparison between the bacterial load on treated (shot-peened surface and cold sprayed copper coating) and untreated surfaces (as-received) is provided. Testing of the surfaces after their exposure to the biological environment demonstrated improved microbial inactivation performances for surfaces that had undergone grain refinement without exceeding a certain roughness value.