Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Date
Availability
1-20 of 46
Ceramics and Thermal Barrier Coatings
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 405-410, May 14–16, 2007,
Abstract
View Paper
PDF
Thermal barrier coatings were produced using both Ar and N 2 as the primary plasma gas. Various aspects of the process and the coatings were investigated. It was found that higher in-flight particle temperatures could be produced using N 2 , but particle velocities were lower. Deposition efficiencies could be increased by a factor of two by using N 2 as compared to Ar. Coatings having similar values of porosity, hardness, Young’s modulus and thermal diffusivity could be produced using the two primary gases. The coatings exhibited similar changes (increased hardness, stiffness and thermal diffusivity) when heat-treated at 1400°C. The results point to the potential advantage, in terms of reduced powder consumption and increased production rate, of using N 2 as compared to Ar as the primary plasma gas for TBC deposition.
Proceedings Papers
Effect of Heat Treatment on Pore Architecture and Associated Property Changes in Plasma Sprayed TBCs
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 411-416, May 14–16, 2007,
Abstract
View Paper
PDF
Plasma sprayed Thermal Barrier Coatings (TBCs) exhibit many interlamellar pores, voids and microcracks. These microstructural features are primarily responsible for the low global stiffnesses and the low thermal conductivities commonly exhibited by such coatings. The pore architecture thus has an important influence on such thermophysical properties. In the present work, the effect of heat treatment (at temperatures up to 1400°C, for times of up to 10 hours) on the pore architecture in detached YSZ top coats has been characterised by Mercury Intrusion Porosimetry (MIP) and gas-sorption techniques. While the overall porosity level remained relatively unaffected (at around 10-12%) after the heat treatments concerned, there were substantial changes in the pore size distribution and the (inter-connected) specific surface area. Fine pores (<~50 nm) rapidly disappeared, while the specific surface area dropped dramatically, particularly at high treatment temperatures (~1400°C). These changes are thought to be associated with intra-splat microcrack healing, improved inter-splat bonding and increased contact area, leading to disappearance of much of the fine porosity. These microstructural changes are reflected in sharply increased stiffness and thermal conductivity. Measured thermal conductivity data are compared with predictions from a recently-developed analytical model, using the deduced inter-splat contact area results as input parameters. Good agreement is obtained, suggesting that the model captures the main geometrical effects and the pore size distribution measurements reflect the most significant microstructural changes.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 417-422, May 14–16, 2007,
Abstract
View Paper
PDF
Thermal barrier coatings (TBCs) with different types of microstructures were produced with the atmospheric plasma-spraying (APS) process. The investigation includes a variation of the micro-crack density and of the porosity level. In addition, also segmented TBCs were produced. Finally, also PVD-TBC systems have added to the investigation. The different TBC systems were cycled in a natural gas/oxygen burner rig with a surface temperature of about 1250°C and a bond coat temperature of about 1100°C or below. The use of relatively low surface temperature guarantees a failure mode close to the bond coat promoted by the growth of the thermally grown oxide (TGO). After failure, metallographic inspection was made to determine the thickness of the TGO layer and the β-phase depleted zone. In addition, the crack path was analyzed and compared for the different microstructures.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 423-427, May 14–16, 2007,
Abstract
View Paper
PDF
It was found that the content of impurity oxides in 7YSZ, such as SiO 2 and Al 2 O 3 , has a significant effect on the coating sintering resistance and phase stability of 7YSZ thermal barrier coatings (TBCs). The reduction of the impurity content will significantly improve the sintering resistance and phase stability of 7YSZ TBCs and thus allow the 7YSZ TBCs to be used at higher temperatures.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 428-433, May 14–16, 2007,
Abstract
View Paper
PDF
It is well known that thermal spray condition affects the coating properties such as porosity, elastic modulus, coefficient of thermal expansion (CTE), coating fracture strength and coating cohesive strength. Therefore, residual stress formed in the sprayed coating and coating stress generated during in-service is dramatically changed with the thermal spray condition. In this study, effect of several kinds of thermal spray conditions on these properties of the coating was examined experimentally. Typical thermal barrier coating system composed of a partially stabilized zirconia (its chemical composition is 8wt%Y 2 O 3 -ZrO 2 ) and CoNiCrAlY bond coating was selected herein. In-flight particle velocity and temperature, and the substrate temperature were changed as the thermal spraying process parameters varied. For the ceramic coating layer, the coating properties such as porosity, Vickers hardness, CTE, elastic modulus, bending fracture strength, fracture toughness of splat boundary and then coating residual stress were measured systematically.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 434-439, May 14–16, 2007,
Abstract
View Paper
PDF
A model of the sintering exhibited by EB-PVD TBCs, based on the principles of free energy minimization, was recently published by Hutchinson et al. In the current paper, this approach is applied to the sintering of plasma-sprayed TBCs and comparisons are made with experimental results. Predictions of through-thickness shrinkage and changing pore surface area are compared with experimental data obtained by dilatometry and BET analysis respectively. The sensitivity of the predictions to initial pore architecture and material properties are assessed. The model can be used to predict the evolution of the contact area between overlying splats. This is in turn related to the through-thickness thermal conductivity, using a previously-developed analytical model.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 440-445, May 14–16, 2007,
Abstract
View Paper
PDF
High temperature thermal fatigue causes the failure of Thermal Barrier Coating (TBC) systems. This paper addresses the development of thick TBCs, focusing attention on the microstructure and the porosity of the Yttria Partially Stabilized Zirconia (YPSZ) coating, in relation to its resistance to thermal cycling fatigue. Thick TBCs, with different grade of porosity, were produced by means of a CoNiCrAlY bond coat and Yttria Partially Stabilised Zirconia top coat, both sprayed by Air Plasma Spray. The thermal fatigue resistance of new TBC systems and the evolution of the coatings before and after thermal cycling were evaluated. The limit of thermal fatigue resistance increases with amount of porosity in the top coat. Raman analysis shows that the compressive in-plane stress increases in the TBC systems after thermal cycling, nevertheless the increasing rate has a trend contrary to the porosity level of top coat.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 446-451, May 14–16, 2007,
Abstract
View Paper
PDF
The growth characteristics of thermally grown oxides (TGO) and their influence on microcracking in an air-plasma sprayed (APS) thermal barrier coating (TBC) were studied. The TBC samples were prepared in either as-received condition or with a pre-heat treatment. In the as-received TBC, TGO that formed upon thermal exposure predominantly consisted of layered and clustered chromia, spinels and nickel oxide, whereas in pre-heat treated samples the TGO was predominantly alumina. The growth characteristics of TGO was found to exhibit a three-stage behavior that was most pronounced in the as-received TBC. Micro-cracks were found to nucleate in clustered oxides, these cracks would grow in association with thickening of the TGO layer. Eventually, oxide-induced cracking and cracking along pre-existing discontinuities near the ceramic/bond coat interface led to spallation of the topcoat. A relationship between the maximum crack size and TGO thickness was established based on fracture mechanics considerations. This relationship is shown to be useful for TBC life prediction.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 452-456, May 14–16, 2007,
Abstract
View Paper
PDF
Two kinds of thermal barrier coatings with NiCoCrAlY bond coatings (BCs) deposited by electron beam-physical vapor deposition (EB-PVD) and high velocity oxy-fuel thermal spraying (HVOF), respectively, as well as their top 8wt.%Y 2 O 3 -ZrO 2 (YSZ) ceramic layers deposited in one batch by EB-PVD were prepared on near-α titanium alloys. The field emission scanning electronic microscopy and microhardness indentation are used in comparatively study of microstructures, microhardness of samples. Cracking modes and crack characteristics in TBCs are investigated after thermal cycling in atmosphere, along with the discussion of roles of residual stresses, bonding strengths and mechanical properties of bond coatings in different failure extents. It is found that morphologies of BCs deposited by different methods (EB-PVD and HVOF) result in the different microstructures and microhardness of their upper YSZ. The denser and more homogeneous BC prepared by EB-PVD leads to the YSZ with finer and denser columnar clusters and higher microhardness, and the inhomogeneous and porous latter results in the upper YSZ with coarser and loosely bonded columnar grains and lower microhardness, and the TBC with BC deposited by EB-PVD is more protective, which is synthetically induced by residual stresses, bonding strengths and mechanical properties of bond coatings.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 457-462, May 14–16, 2007,
Abstract
View Paper
PDF
Nanostructured NiCrAlY coating was deposited by cold spray, using a milled powder for applications as a bond coat to thermal barrier coating. A shot-peening treatment was then applied to the as-sprayed coating to modify the coating surface morphology. The oxidation behavior of the coating with the shot-peened surface was investigated under isothermal oxidation at 900°C and 1,000°C for different times. The oxidation behavior of the coating was characterized through surface morphology and cross-sectional microstructure by scanning electron microscopy and X-ray diffraction analysis. It was found that a uniform oxide layer was formed on the surface of the shot-peened nanostructured NiCrAlY coating during oxidation at temperatures of 900°C and 1,000°C. The nanostructure of the initial coating possibly promoted rapid formation of α-Al 2 O 3 oxide. It was clearly revealed that the surface morphology of the coating significantly impacted the morphology of the oxide. The surface geometry of the cold-sprayed MCrAlY coating must be modified to promote formation of a protective oxide film during oxidation, through application of a post-treatment process such as shot-peening.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 463-467, May 14–16, 2007,
Abstract
View Paper
PDF
The Solution Precursor Plasma Spray process allows the creation of coatings directly from chemical precursors, thus avoiding the task of making sprayable powders. To date, our research has been based on injecting chemical precursors into a DC plasma torch. The process has proven to be useful in making vertically cracked thermal barrier coatings and has shown special advantages for making thick thermal barrier coatings (up to 4 mm). More recently, the process has been modified to produce dense, crack free coatings. This development was enabled by an improved understanding of the process, including making a coating almost exclusively from ultra-fine splats and avoiding the formation of vertical cracks. A crack free, dense alumina-yttria stabilized zirconia coating has been produced which is 98% dense and has an average Vickers hardness (300 gf) of 1177.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 468-471, May 14–16, 2007,
Abstract
View Paper
PDF
6~8% Y 2 O 3 partially stabilized ZrO 2 (YPSZ) nanostructured coatings were fabricated by atmospheric plasma spraying (APS). The fractured cross-section morphologies of the samples were observed by scanning electron microscopy (SEM). The thermal conductivities of free-standing pure nanostructured YPSZ coatings samples were determined using the laser flash technique. Specific heat was measured through a differential scanning calorimeter. The results showed that there is a great difference between the fractured cross-section microstructure of nanostructured and conventional zirconia coatings. The nanostructured one exhibits a bimodal distribution of microstructure, viz. directional crystal and isometric crystal structure. Plasma spraying parameters have a significant effect on the microstructure through changing the content of isometric crystal structure in the coating. The thermal conductivity decreased with increased isometric crystal microstructure content. The thermal conductivity can be lowered up to 60%.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 472-477, May 14–16, 2007,
Abstract
View Paper
PDF
Plasma sprayed ceramic coatings have been widely applied in modifying surface properties of metal components. They are useful to prevent various types of wear, corrosion, erosion and thermal degradation, thereby extending components service life and reducing the need for expensive and repetitive maintenance. The durability and functionality of plasma sprayed ceramic coatings is critically dependent on the adhesion between the ceramic coating and the underlying substrate as well as the cohesion between splats. In this work, both nanostructured and conventional Al 2 O 3 coatings were prepared by atmospheric plasma spraying technology (APS). For each feedstock, four kinds of coating samples deposited under different spraying parameters were designed, and moreover, seven groups of conventional coatings with different thickness were deposited under the same spraying parameters. Adhesion/cohesion of the plasma sprayed Al 2 O 3 coating samples were evaluated by scratch testing. The results obtained reveal that the spraying parameters have strong influences on the microstructure of plasma sprayed Al 2 O 3 coatings, which in turn influence their properties including deposition efficiency, porosity, microhardness as well as adhesion/cohesion.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 478-483, May 14–16, 2007,
Abstract
View Paper
PDF
Yttria stabilized zirconia (YSZ) is the most commonly used electrolyte material for solid oxide fuel cells (SOFCs), due to its pure ionic conductivity and chemical stability. Standard electrolyte fabrication techniques for planar fuel cells involve wet ceramic techniques such as tape-casting or screen printing, which require sintering at temperatures above 1300°C. Plasma spraying (PS) may provide a more rapid and cost efficient method of producing SOFCs without requiring high temperature post-deposition heat treatments. However, it is difficult to produce plasma sprayed layers that are both thin (<20µm) and completely dense. It is of utmost importance to have a dense electrolyte to prevent the mixing of cathode and anode reactant gases. This study investigates the use of spin coated sol gel derived YSZ precursor solutions to fill the pores present in plasma sprayed YSZ layers.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 484-488, May 14–16, 2007,
Abstract
View Paper
PDF
The potential of the high velocity oxy-fuel (HVOF) thermal spray process to produce coatings with reduced porosity is well known. The ability to produce high density ceramic coatings offers potential in high performance applications in the fields of wear, corrosion resistance and dielectric coatings. It has been, however, demonstrated that benefits from HVOF ceramic coatings can be obtained only if particles are melted enough and good lamella adhesion is produced. Therefore, due to the operational limits of the HVOF process, the process-structure- relationship must be well optimized. One strategy to improve melting of ceramic particles in the relatively low flame temperatures of the HVOF process is to modify particle crystal structure and composition. In this paper, the effects of the powder structure and the composition on coating microstructure and deposition efficiency of the HVOF spray process are studied. The effect of fuel gas, hydrogen vs. propane, was also demonstrated. The studied materials were agglomerated alumina- and titania-based pure and composite powders. Coating properties such as microstructure, hardness, and abrasive wear resistance, were compared to the coating manufactured by using conventional fused and crushed powders.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 489-494, May 14–16, 2007,
Abstract
View Paper
PDF
In result of the spray process normally a phase change from α-alumina (corundum) in the feedstock powder to predominantly α-alumina in the coating takes place. This is a well known but often neglected fact in the preparation and use of alumina coatings. This is of special interest since the high usage properties of thermally sprayed alumina coatings are generally derived from sintered alumina ceramics which consist of corundum. It is expected that the prevention of this phase transformation will significantly change the mechanical, electrical and other properties of thermally sprayed alumina coatings. There is controversial information about the possibility of stabilization of α-alumina by additions of chromia in the literature. In this work the stabilization using different spray processes (water stabilized plasma WSP, gas stabilized plasma APS and HVOF) was studied. Mechanical mixtures of alumina and chromia were used, as well as pre-alloyed powders consisting of solid solutions. The coatings were studied by X-ray diffraction and metallographic cross-sections. It was shown that in the case of the mechanically mixed powders the stabilization predominantly depends on the applied spray process. The stabilization by use of the WSP process was confirmed.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 495-500, May 14–16, 2007,
Abstract
View Paper
PDF
Abradable seals have been used in jet engines since the late 1960's. Today abradable seals are seeing applications not only in low pressure and high pressure sections of the compressor but also in the high pressure turbine module of jet engines and are gaining ever more attention in industrial gas turbines. Thermal spraying is a relative simple and cost effective means to apply abradable seals. These work by minimizing gaps between rotating and stationary components by allowing the rotating parts to cut into the stationary ones. The types of coatings employed are zirconia based abradable material systems with polymer and, in some cases, hexagonal boron nitride additions. The coatings are designed to work at service temperatures of up to 1200 °C. The objective of this paper is to review various types of commercial and experimental ceramic abradable systems and to assess their performance profiles. The paper will review yttria stabilized zirconia based systems with modified polymer additions and with variable particle sizes of the ceramic phase. Alternative stabilizers and their influence on key coating properties such as thermal shock resistance and abradability will be studied. The paper will also review the influence of plasma spray parameters on coating properties and study the general influence of coating porosity on coating erosion properties and abradability.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 501-506, May 14–16, 2007,
Abstract
View Paper
PDF
The monoclinic and tetragonal phase compositions and distribution in air plasma sprayed (APS) yttria-partially stabilized zirconia (YPSZ) thermal barrier coatings were studied. The coatings were produced from powders with varying phase concentrations, chemical purity and powder production processes. Both the powder and coatings were characterized using X-ray diffraction (XRD) and Raman spectroscopy. The use of environmental scanning electron microscopy (ESEM) and X-ray energy dispersive analysis (EDS) added morphological and elemental information to the study. XRD and Raman spectroscopy were shown to be powerful combined tools and shows an overall decrease in the monoclinic phase within the coatings produced from the different powders. The distribution of both the monoclinic and the tetragonal phases could be highlighted both in the coatings and the individual powder particles. This indicated changes in monoclinic concentration in the less dense areas of some of the coatings and a varying distribution across particles in some of the powders. Raman mapping over small areas also showed how phase surface distribution, on the coatings surfaces, could be assessed.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 507-512, May 14–16, 2007,
Abstract
View Paper
PDF
The physico-chemical and thermo-mechanical properties of aluminosilicate ceramics (high melting point, low thermal expansion coefficient, excellent thermal shock resistance, low density and good corrosion resistance) make this class of materials a good option for high temperature structural applications. Al 2 O 3 -SiO 2 compounds show an excellent refractory behaviour allowing a wide use as wear resistant thermal barrier coatings, in metallurgical and glass plants and in high temperature heat exchangers. Moreover the low values of thermal expansion coefficient and of complex permittivity allow to extend the use of this ceramic for microelectronic devices, radome for antennas and electromagnetic windows for microwaves and infrared. The present paper presents the results of an extensive experimental activity carried out to produce thick aluminosilicate coatings by plasma spray technique. APS deposition parameters were optimized on the basis of a surface response approach, as specified by design of experiments (DoE) methodologies. Samples were tested for phase composition, total porosity, microstructure, microhardness, deposition efficiency, fracture toughness and modulus of rupture. Finally, coatings were characterized for their particularly interesting electromagnetic properties: complex permittivity was measured at microwave frequency using a network analyzer with wave guide.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 513-517, May 14–16, 2007,
Abstract
View Paper
PDF
In order to develop protective coatings for sink rolls in continuous hot-dip galvanizing, a sprayed MoB/CoCr cermet coating was formed on a 316L stainless steel by the HVOF spraying process and its durability in the molten 55%Al-Zn- 1.5%Si bath (923 k) has been investigated by SEM and EDS. The immersion test revealed that the MoB/CoCr coating has much higher durability (640 hours) in 55%Al-Zn-1.5%Si bath than the conventional sprayed coatings (120 hours), such as WC-Co, WC/Co/Cr and ceramics. It was found that the failure of MoB/CoCr coating is mainly caused by the mismatch of coefficient of thermal expansion (CTE) between the top coating and the substrate. The failure procedure is that first crack is generated because of heat stress, then the crack proceeds and causes scaled delamination, at the same time molten Al-Zn will enter into cracks and/or Al-Zn reaches the undercoat and/or substrate, finally molten Al-Zn dissolves the substrate.
1