Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Date
Availability
1-3 of 3
Automotive, Rail, Heavy Equipment, and Marine Industries
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 553-560, May 24–28, 2021,
Abstract
View Paper
PDF
The present study compares needed prerequisites for the application of cavitation resistant bronzes by applying different coating techniques, such as cold spraying, HVOF spraying, warm spraying and arc spraying. By optimization to optimum cavitation resistance, the deposited coatings can increase the service life of ship rudders significantly and even serve as repair processes for ship propellers. The given overview aims to support the selection of processes when specifying the target properties to be set with regard to cavitation protection. By using high-pressure warm spraying and cold spraying, properties similar to those of cast nickel aluminum bronze were achieved, however at relatively high costs. In contrast, coatings produced by using HVOF and arc spraying have erosion rates that are only about four respectively three times higher as compared to cast nickel aluminum bronze, while far outperforming bulk shipbuilding steel. Hence, their properties should be sufficient for acceptable service life or docking intervals for ship rudder applications. Propeller repair might demand for better coating properties as obtained by cold spraying. With respect to costs, HVOF and arc spraying in summary might represent a good compromise to reach coating properties needed in application.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 561-568, May 24–28, 2021,
Abstract
View Paper
PDF
One of the main levers to reduce CO2 emissions in cars and trucks is mass and friction reduction, which is often achieved through the use of special coatings. The aim of the present work was to develop metal-ceramic-lubricant composite coatings with the best combination of wear, seizure, fatigue, and thermal resistance. Metal-based coatings incorporating hard particles and solid lubricants were cold sprayed onto steel substrates and the relationship between coating microstructure and tribology was studied. To meet the demanding tribological requirements of heavily loaded engines, the interfaces between the different components were optimized by selecting appropriate feedstock powders and assessing a wide range of process parameters. Alumina-reinforced bronze composite coatings were made from powders with different morphologies. Aggregated ceramic powders were found to be more beneficial in terms of wear than massive powders, and graphite was found to be effective for reducing seizure.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 569-577, May 24–28, 2021,
Abstract
View Paper
PDF
Assemblies containing fiber-reinforced plastic (FRP) and metal parts are typically fastened together via mechanical joining or adhesive bonding. Mechanical joining processes tend to weaken FRP parts by cutting fibers, while adhesives require long cures and often lead to inseparable material compounds. This paper evaluates a new joining method in which plastic parts are laser treated, then metallized via wire-arc spraying, and finally soldered to mating metal parts using a low-temperature process. Due to the effective increase in interface area resulting from laser structuring, bond strengths of up to 15.5 MPa can be achieved.