Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-9 of 9
R.G. Castro
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2003, Thermal Spray 2003: Proceedings from the International Thermal Spray Conference, 1197-1204, May 5–8, 2003,
Abstract
PDF
During plasma spraying in-flight particle characteristics are influenced by the many operating parameters associated with the deposition process. The distinctive temperature and velocity signals given by particles as they exit the plasma torch can be used to develop processing maps for defining the optimal operating envelope. Knowing the temperature and velocity history of the particles, the evolution of the microstructure, the amount of porosity and the phase composition can potentially be predicted. In this paper, the relationship of system parameters (stand-off distance, torch power, plasma gas composition and process gas flow) was correlated to in-flight particle characteristics of yttria stabilized zirconia and compared to the resulting coating features such as thickness, microstructure, porosity and phase composition. The appearance of the coating (i.e., color) was also compared after the deposition process. Yttria stabilized zirconia was deposited on grit blasted samples using an F4 (Sulzer Metco) plasma torch. Before depositing each sample on the substrate, the particle properties were measured at the desired stand off distance perpendicular to the particle jet covering an area of 18x18 mm 2 using the Tecnar DPV2000 inflight particle analyzer. The coatings were cross-sectioned for microstructure analysis, thickness measurements and deposition efficiency. Free standing films were used for mercury intrusion porosimetry. Grey levels of the coatings were obtained by optical microscopy and subsequent digital image recording. X-ray-diffraction analysis was also used to obtain the phase composition. Results showed that different particle temperature and velocity conditions lead to specific porosity and varying colors of the deposit. The color of the deposit was correlated directly to the amount of monoclinic phase in the as-deposit material.
Proceedings Papers
ITSC2000, Thermal Spray 2000: Proceedings from the International Thermal Spray Conference, 413-417, May 8–11, 2000,
Abstract
PDF
Plasma spraying was used to produce continuously graded and layered structures of molybdenum disilicide and alumina. These microstructures were achieved by manipulating the powder hoppers and plasma torch translation via in-house created computer software. The resultant microstructures sprayed uniformly and were crack free. The mechanical and thermal performance of these sprayed materials will be evaluated through C-ring tests and thermal cycling experiments respectively. The purpose of this study is two fold; firstly to demonstrate the ability of produce such composite ceramic microstructures using a conventional plasma spraying process, and secondly to quantify the improvements in thermo-mechanical performance provided by these composite microstructures over conventional monolithic microstructures.
Proceedings Papers
ITSC2000, Thermal Spray 2000: Proceedings from the International Thermal Spray Conference, 583-587, May 8–11, 2000,
Abstract
PDF
There is a continued need within the aerospace and space communities to increase the structural efficiency of launch vehicles in order to increase the payload and/or lower fuel usage. Many of these structures have critical stiffness demands because of deflection, buckling, or acoustic/vibration damping. Aluminum-beryllium (Al-Be) is a candidate material for many such structural components because it has a very high stiffness to weight ratio (second only to pure beryllium) and has superior formability and weldability as compared to beryllium. The strength to weight ratio of commercial Al-Be is superior to aluminum alloys (7050 and 6061-T6) that are currently used for aerospace and space applications. Plasma spray forming of Al-Be alloys is being investigated at Los Alamos National Laboratory for producing axial symmetric components for aerospace and space applications. Plasma spray forming of beryllium and beryllium alloys was investigated during the 1960's and 70's by Union Carbide Speedway Laboratories and the Atomic Weapons Establishment for producing axial symmetric launch vehicle components for defense related applications. Information is presented on the thermal and mechanical properties of plasma sprayed AlBeMet which is a commercial Al-Be alloy produced by Brush Wellman Inc.
Proceedings Papers
ITSC2000, Thermal Spray 2000: Proceedings from the International Thermal Spray Conference, 657-661, May 8–11, 2000,
Abstract
PDF
Transferred-arc cleaning is being investigated as a solvent-free cleaning method for various metallic substrates. With the recent increase in attention given the hazards involved in the storage, use and disposal of organic solvents, cleaning methods which promise comparable cleaning effectiveness with reduced hazards are being sought. Transferred-arc cleaning of tungsten substrates has been studied to identify the effect of processing conditions on cleaning and roughening characteristics. A Box-Behnken response surface designed experiment varying the chamber pressure, substrate standoff distance and plasma torch arc current while observing the transferred-arc voltage, current, surface cleanliness and surface roughness was performed. The results of the analysis show the effect of the various independent variables on the measured responses. Particular difficulties in roughening tungsten are due to its exceptionally high arc voltage for metal arc attachment. The results presented here provide an enhanced understanding of the arcing properties of various cathode materials. Such information is useful in obtaining the desired cleaning and/or roughening of the substrate.
Proceedings Papers
ITSC1998, Thermal Spray 1998: Proceedings from the International Thermal Spray Conference, 1199-1204, May 25–29, 1998,
Abstract
PDF
The intermetallic compound, molybdenum disilicide (MoSi2), is being considered for high temperature structural applications because of its high melting point and superior oxidation resistance at elevated temperatures. The lack of high temperature strength, creep resistance and low temperature ductility has hindered its progress for structural applications. Plasma spraying of coatings and structural components of MoSi2-based composites offers an exciting processing alternative to conventional powder processing methods due to superior flexibility and the ability to tailor properties. Laminate, discontinuous and in situ reinforced composites have been produced with secondary reinforcements of Ta, Al203, SiC, Si3N4 and Mo5Si3. Laminate composites, in particular, have been shown to improve the damage tolerance of MoSi2 during high temperature melting operations. A review of research which has been performed at Los Alamos National Laboratory on plasma spraying of MoSi2-based composites to improve low temperature fracture toughness, thermal shock resistance, high temperature strength and creep resistance will be discussed.
Proceedings Papers
ITSC1997, Thermal Spray 1997: Proceedings from the United Thermal Spray Conference, 751-756, September 15–18, 1997,
Abstract
PDF
The use of MoSi 2 as a high temperature oxidation resistant structural material is hindered by its poor elevated temperature creep resistance. The addition of second phase Si 3 N 4 holds promise for improving the creep properties of MoSi 2 without decreasing oxidation resistance. The high temperature impression creep behavior of atmospheric plasma sprayed (APS) and hot pressed (HP) MoSi 2 /Si 3 N 4 composites was investigated. Values for steady state creep rates, creep activation energies, and creep stress exponents were measured. Grain boundary sliding and splat sliding were found to be the dominant creep mechanisms for the APS samples while grain boundary sliding and plastic deformation were found to be the dominant creep mechanisms for the HP samples.
Proceedings Papers
ITSC1996, Thermal Spray 1996: Proceedings from the National Thermal Spray Conference, 429-437, October 7–11, 1996,
Abstract
PDF
MoSi 2 provides good high temperature oxidation and corrosion resistance. However, the lower silicides such as MosSis do not provide such resistance. In this study, atmosphereic plasma sprayed (APS) MoSi 2 particle temperatures and velocities were measured under various torch conditions chosen to span the majority of typically utilized spray parameters. Empirical models of particle temperature and velocity were computed from the data. Three spray conditions were chosen to produce high, medium and low particle temperatures and velocities. Coatings produced under these spray conditions were characterized by profile tracing, quantitative x-ray diffraction, and SEM analysis. The Mo 5 Si 3 level in the coatings ranged from 5% to 8% while the Mo 5 Si 3 level in the starting powder was 0.6%. Particle size, particle trajectory, and torch parameters were found to be important factors in the Si loss process when APS depositing MoSi 2 .
Proceedings Papers
ITSC1996, Thermal Spray 1996: Proceedings from the National Thermal Spray Conference, 735-739, October 7–11, 1996,
Abstract
PDF
Plasma spraying is under investigation as a method for in-situ repair of damaged beryllium and tungsten plasma facing surfaces for the International Thermonuclear Experimental Reactor (ITER), the next generation magnetic fusion energy device, and is also being considered as a potential fabrication method for beryllium and tungsten plasma-facing components for the first wall of ITER. Investigators at the Los Alamos National Laboratory's Beryllium Atomization and Thermal Spray Facility have concentrated on investigating the structure property relationship between the as-deposited microstructures of plasma sprayed beryllium coatings and the resulting thermal properties of the coatings. In this study, the effect of the initial substrate temperature on the resulting thermal diffusivity of the beryllium coatings and the thermal diffusivity at the coating/beryllium substrate interface (i.e. interface thermal resistance) was investigated. Results have shown that initial beryllium substrate temperatures greater than 600°C can improve the thermal diffusivity of the beryllium coatings and minimize any thermal resistance at the interface between the beryllium coating and beryllium substrate.
Proceedings Papers
ITSC1996, Thermal Spray 1996: Proceedings from the National Thermal Spray Conference, 841-845, October 7–11, 1996,
Abstract
PDF
Residual stresses in net-shaped plasma sprayed tubes was measured by X-ray microdiffraction, as a function of radial position in the sample. A tensile to compressive hoop stress profile was measured, ranging 200 MPa in tension at the outer diameter, to ~125 MPa at the inner. A force balance model was used to explain the evolution of stresses when incrementally adding layers to the pre-existent material.