Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
R. Walker
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2000, Thermal Spray 2000: Proceedings from the International Thermal Spray Conference, 1191-1199, May 8–11, 2000,
Abstract
PDF
Over the past 30 years, there has been considerable interest in the development of thermally sprayed thermal barrier coatings (TBCs) for aerospace and land based turbine applications. The use of TBCs enables higher operating temperatures, resulting in significant fuel efficiency savings. This paper reports on the development of dense Yttria Stabilised Zirconia (YSZ) thermal barrier coatings produced by High Velocity Oxygen Fuel (HVOF) spraying using acetylene as the fuel gas. The use of a high temperature gas erosion rig allowed the controlled evaluation of erodent size, velocity, impact angle, and temperature on coating performance. The work also covers the optimization of process parameters, including powder morphology, stand-off distance, oxygen to fuel ratio, gas pressures, and flowrates, and their effect on coating characteristics such as deposition efficiency, microhardness, and surface roughness.