Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
R. Goswami
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2000, Thermal Spray 2000: Proceedings from the International Thermal Spray Conference, 729-736, May 8–11, 2000,
Abstract
PDF
Molybdenum splats were produced at three plasma conditions on steel substrates preheated to three temperatures. Morphology of splats and corresponding craters formed on substrates were observed; dimensions of splats and craters were measured with an optical non-contact interferometer. It is found that substrate is significantly melted and deformed upon impact of the droplet, which leads to the formation of flower like splats and craters. On average, only about 36 to 53 % of the areas covered by splats were in good metallurgical/mechanical contact with substrate. Normalized crater volume increases with droplet size and the contact is improved for the high particle energy/high substrate temperature condition as compared with low particle energy/medium substrate energy condition. Splat morphology and crater formation is explained based on impinging jet heat transfer model.