Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
N.M. Margadant
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2000, Thermal Spray 2000: Proceedings from the International Thermal Spray Conference, 1135-1140, May 8–11, 2000,
Abstract
PDF
During the last decades, improved understanding of tribological behavior of different material combinations led also to an intensified development of thermal spray applications. In the field of e.g. hard chromium replacement by thermal spraying, significant amount of work has been done and published world wide, however, the authors manly focused on only one tribological aspect like friction, abrasion, erosion, cavitation or corrosion, respectively. In real applications, often more than one of those factors influence the successful use of these coatings. Besides the bulk properties of the materials, the coating micro structure, which is strongly spray system dependent, needs to be considered and investigated. Higher functionality and reliability than conventional competitive coatings still has to be proved at laboratory scale and under field conditions for thermally sprayed coatings. This paper describes the state of the art of thermally sprayed coatings as alternatives for other coatings. Published literature data and a wide range of own tribological investigations and field tests, reveals the potential for other applications.