Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
M. Sasaki
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2000, Thermal Spray 2000: Proceedings from the International Thermal Spray Conference, 455-462, May 8–11, 2000,
Abstract
PDF
316L stainless steel and Hastelloy C alloy powders were sprayed by an HVOF apparatus onto mild steel substrates. The microstructure, pore size distribution, composition and corrosion resistance of thus obtained coatings were evaluated experimentally. Corrosion resistance in sea-water was examined by monitoring the impedance and corrosion potential of samples immersed in artificial sea-water at 300 K over a period of more than 3 months and also by polarization measurement. It was found that the stainless coatings composed mainly of plastically deformed particles and some splats which were molten at the impact. By increasing the combustion pressure, the porosity as measured by mercury porosimeter could be reduced to below 1%. In comparison, Hastelloy C deposits sprayed under the standard condition were so dense that its porosity could not be measured by the porosimeter. The polarization curve and the results of impedance monitoring both exemplified that the Hastelloy C coatings possess much superior corrosion resistance to the stainless coatings in sea-water, which was attributed to the higher density and better adhesion of the Ni-base alloy coatings.