Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
J.E. Craig
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2003, Thermal Spray 2003: Proceedings from the International Thermal Spray Conference, 1107-1112, May 5–8, 2003,
Abstract
View Paper
PDF
A two-wavelength particle imaging sensor has been developed to measure temperature and velocity of individual particles in most thermal spray devices. The sensor provides continuous updates to particle condition profiles, histograms and correlation’s. The software locates particle streaks, determines the intensity ratio and dimensions of each streak, and calculates the particle temperature and velocity. Many forms of advanced materials processing technologies, such as thermal spray, spray-forming and atomization have considerable need of process control sensor technology. These measurements provide the basis for application of the sensor to many of these processes. Particle temperature and velocity measurements of plasma-sprayed ceramic powder were obtained using the sensor. The average temperature varied from 2800 K to 3000 K as the current to the plasma was increased from 700 amps to 900 amps. The average velocity varied from 85 m/s to 99 m/s over the same range. These results compare favorably with similar measurements, reported in the literature. With its full-stream field of view, the vision-based particle sensor can be applied to control strategies for the purpose of providing stable particle temperatures and velocities over long duration plasma spray processes.
Proceedings Papers
ITSC2000, Thermal Spray 2000: Proceedings from the International Thermal Spray Conference, 51-56, May 8–11, 2000,
Abstract
View Paper
PDF
A two-wavelength particle imaging pyrometer has been developed to measure temperature, velocity and size of individual particles within a field of view and a depth of field that spans the entire particle stream in most thermal spray devices. The pyrometer provides continuous updates to particle condition profiles, histograms and correlations. The software locates particle streaks, determines the intensity ratio and dimensions of each streak, and calculates the particle temperature, velocity and size. Many forms of advanced materials processing technologies, such as thermal spray, spray-forming and atomization processes, have considerable need of process control sensor technology. These measurements provide the basis for application of the pyrometer to many of these processes. Particle temperature measurements of plasma-sprayed ceramic powder were obtained using a spectrometer and the pyrometer. Comparisons of the measurements show that the vision-based pyrometer has excellent accuracy. The standard deviation of the measurements was 40 K or about 1.3 %. Additional pyrometer measurements were used to determine its minimum detectable temperature and velocity change, which were 12.4 K and 2.77 m/s, or 0.4 % and 1.5 %, respectively. The vision-based particle sensor can now be applied to high performance control strategies to provide stable particle temperatures and velocities over long duration plasma spray processes.