Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
G.-C. Ji
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC1998, Thermal Spray 1998: Proceedings from the International Thermal Spray Conference, 287-292, May 25–29, 1998,
Abstract
PDF
Abstract The effects of powder types and HVOF spray systems used to produce Cr 3 C 2 -NiCr coating on the relationships between spray parameters and wear performance were investigated based on the effect of fuel gas conditions on abrasive wear and erosion wear. The relationships between spray parameters and wear properties were obtained by orthogonal regression experimental design method. Four types of powders and two HVOF spray systems were used. It is found that with the increase in fuel gas flow or pressure the abrasive wear and erosion of Cr 3 C 2 -NiCr coatings change following a concave curve. The Cr 3 C 2 -NiCr coating with the best wear performance will be deposited under intermediate fuel gas condition. It is experimentally confirmed that by different types of powders and HVOF systems applicable to HVOF spraying of Cr 3 C 2 -NiCr coating, although the optimized fuel gas conditions to deposit coating with the best wear performance will be influenced by types of starting powders.