Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Andreas Elsenberg
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 250-257, May 22–25, 2023,
Abstract
View Paper
PDF
Tailoring strength and ductility in additive manufacturing or repair is key to successful applications. Therefore, cold spraying must be tuned for maximum amounts of well-bonded internal interfaces as well as sufficient softening of the highly workhardened deposit. Zinc (Zn) with its low melting temperature is an ideal model system to study phenomena associated with high strain rate deformation and local temperature distributions, both, in single impacts and thicker deposits. Bonding and recrystallization can be facilitated by covering selected wide parameter regimes in cold spraying. Despite the low temperatures, Zn single splats already show recrystallization at internal interfaces, the respective amounts then scaling with increasing process gas temperatures. At higher process temperatures, deposits are almost fully recrystallized. The recrystallization seems to improve bonding at internal and at deposit-substrate interfaces. Under optimum conditions, an ultimate deposit cohesive strength of up to 135 MPa and an elongation to failure of 18.4% are reached, comparable to that of laser-manufactured or bulk Zn parts. This demonstrates a welltuned interplay between high amounts of bonded interfaces and softening by recrystallization that allows for deriving bulk-like performance of cold sprayed material without additional posttreatments. Correlations between microstructures, mechanical properties, and fracture mechanisms supply information about prerequisites needed for reaching high ductility as obtained in damage and failure modes of deposits and bulk materials in global and local approaches.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 340-345, May 24–28, 2021,
Abstract
View Paper
PDF
In general, similar MAX-Phase coatings are considered as oxidation protection layer for preventing disastrous reactions of the Zircaloy fuel rods during a cooling water failure in a nuclear power plant. For the present study on Aerosol Deposition, Ti3SiC2 was selected as MAX-phase model system due to the availability of property data and commercial powder. The as-received powder was milled to different nominal sizes. For revealing details on coating formation and possible bonding mechanisms, Aerosol Deposition experiments were performed for different particle size batches and process gas pressures. Microstructural analyses reveal that coating formation preferably occurs for particle sizes smaller than two microns. Using such small particle sizes, crack-free, dense layers can be obtained. The individual deposition efficiencies for the different particle sizes, particularly the critical size below which deposition gets prominent, vary with process gas flows and associated pressures. Detailed microstructural analyses of coatings by high resolution scanning electron microscopy reveal plastic deformation and fracture, both attributing to shape adaption to previous spray layers and probably bonding. In correlation to coating thickness or deposition efficiencies, respective results give indications for possible bonding mechanisms and a tentative window of Aerosol Deposition for Ti3SiC2 MAX-phases as spray material.