Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
A.M. Ahmed
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2000, Thermal Spray 2000: Proceedings from the International Thermal Spray Conference, 187-193, May 8–11, 2000,
Abstract
PDF
This paper presents a mathematical model of the in-flight oxidation of spherical particles during thermal spray deposition process. The model includes analysis of the mechanical and thermal behavior of the powder particles. The former accounts for acceleration and deceleration of the particles at the spray distance under different fluid velocities. The thermal behavior takes into account heating, melting, cooling and possible solidification as the particle travel towards the substrate. A finite-difference method is used to solve the thermal energy conservation equation of the particles. The model includes nonequilibrium calculations of the phase change phenomena in the liquid-solid (mushy) zone. The growth of the oxide layer at the particle surface is represented by a modified boundary condition, which includes finite-rate oxidation. The results obtained give the interrelations between various process parameters and the oxidation phenomenon and agree with experimental observation.