Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
A.A. Kulkarni
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2000, Thermal Spray 2000: Proceedings from the International Thermal Spray Conference, 1061-1066, May 8–11, 2000,
Abstract
PDF
Thermal barrier coatings (TBCs) are used on heat engine parts to impart protection to components against failure under excessive heat loads, to increase inlet temperatures with consequent improvements in efficiency, and to reduce requirements for cooling. Control of thermal conductivity is addressed since low thermal conductivity depends not only on the nature of the yttria stabilized zirconia (YSZ) layer, but also on the morphology of pores and cracks, which are closely linked to process parameters. This paper will present the influence of feedstock characteristics (particle size distribution and powder morphology) and thermal cycling on porosity content and thermal conductivity of zirconia coatings. The results show increased porosity with particle size, due to an increase in the degree of particle fragmentation and unmelted particles, leading to lower thermal conductivity. Coatings sprayed with powders of different powder morphology yielded changes in porosity and interlamellar contact, thus, influenced thermal conductivity. Sintering effects during thermal cycling resulted in reduced porosity and increased thermal conductivity.